1
MHT CET 2024 11th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $x \in[-1,1]$, then the value of $\int \mathrm{e}^{\sin ^{-1} x}\left(\frac{x+\sqrt{1-x^2}}{\sqrt{1-x^2}}\right) \mathrm{d} x$ is

A
$e^{\sin ^{-1} x}+c$, where $c$ is constant of integration.
B
$\mathrm{e}^{\sin ^{-1} x} \cdot \sin x+\mathrm{c}$, where c is constant of integration.
C
$\mathrm{e}^{\sin ^{-1} x} \cdot \cos x+\mathrm{c}$, where c is constant of integration.
D
$\mathrm{e}^{\sin ^{-1} x} \cdot x+\mathrm{c}$, where c is constant of integration.
2
MHT CET 2024 10th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

$\int \frac{\mathrm{d} x}{\sqrt{\mathrm{e}^x-1}}=2 \tan ^{-1}(\mathrm{f}(x))+\mathrm{c}$ where $x>0$ and c is a constant of integration, then $\mathrm{f}(x)$ is

A
$\mathrm{e}^x-1$
B
$\sqrt{\mathrm{e}^x-1}$
C
$\mathrm{e}^x+1$
D
$\sqrt{\mathrm{e}^x+1}$
3
MHT CET 2024 10th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The value of $\int \frac{\mathrm{d} x}{x^2\left(x^4+1\right)^{\frac{3}{4}}}$ is

A
$\left(\frac{-x^4+1}{x^4}\right)^{\frac{1}{4}}+c$, where $c$ is constant of integration.
B
$\left(x^4+1\right)^{\frac{1}{4}}+\mathrm{c}$, where c is constant of integration.
C
$-\left(x^4+1\right)^{\frac{1}{4}}+\mathrm{c}$, where c is constant of integration.
D
$-\left(\frac{x^4+1}{x^4}\right)^{\frac{1}{4}}+c$, where $c$ is constant of integration.
4
MHT CET 2024 10th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

$$\int \sin ^{-1}\left(\frac{2 x}{1+x^2}\right) \mathrm{d} x=$$

A
$2 x \tan ^{-1} x-\log \left(1+x^2\right)+\mathrm{c}$, where c is a constant of integration.
B
$2\left(x \tan ^{-1} x-\log \left(1+x^2\right)\right)+\mathrm{c}$, where c is a constant of integration.
C
$x \tan ^{-1} x+\log \left(1+x^2\right)+\mathrm{c}$, where c is a constant of integration.
D
$2\left(x \tan ^{-1} x+\log \left(1+x^2\right)\right)+\mathrm{c}$, where c is a constant of integration.
MHT CET Subjects
EXAM MAP