If the line $$\frac{x-1}{2}=\frac{y+1}{3}=\frac{z-2}{4}$$ meets the plane $$x+2 y+3 z=15$$ at the point $$P$$, then the distance of $$\mathrm{P}$$ from the origin is
The equation of line passing through the point $$(1,2,3)$$ and perpendicular to the lines $$\frac{x-2}{3}=\frac{y-1}{2}=\frac{z+1}{-2}$$ and $$\frac{x}{2}=\frac{y}{-3}=\frac{z}{1}$$ is
The angle between the line $$\frac{x+1}{2}=\frac{y-2}{1}=\frac{z-3}{-2}$$ and plane $$x-2 y-\lambda z=3$$ is $$\cos ^{-1}\left(\frac{2 \sqrt{2}}{3}\right)$$, then value of $$\lambda$$ is
If the direction cosines $$l, \mathrm{~m}, \mathrm{n}$$ of two lines are connected by relations $$l-5 \mathrm{~m}+3 \mathrm{n}=0$$ and $$7 l^2+5 \mathrm{~m}^2-3 \mathrm{n}^2=0$$, then value of $$l+\mathrm{m}+\mathrm{n}$$ is