1
MHT CET 2023 11th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $$\mathrm{I}=\int \sin (\log (x)) \mathrm{d} x$$, then $$\mathrm{I}$$ is given by

A
$$-\frac{x}{2}(\sin (\log x)-\cos (\log x))+\mathrm{c}$$, where c is a constant of integration.
B
$$\frac{x}{2}(\sin (\log x)-\cos (\log x))+\mathrm{c}$$, where c is a constant of integration.
C
$$\frac{x}{2}(\sin (\log x)+\cos (\log x))+\mathrm{c}$$, where c is a constant of integration.
D
$$-\frac{x}{2}(\sin (\log x)+\cos (\log x))+c$$, where c is a constant of integration.
2
MHT CET 2023 11th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

$$\int \frac{\mathrm{e}^x(1+x)}{\cos ^2\left(\mathrm{e}^x \cdot x\right)} \mathrm{d} x=$$

A
$$-\cot \left(\mathrm{e}^x\right)+\mathrm{c}$$, where $$\mathrm{c}$$ is a constant of integration.
B
$$\tan \left(x \cdot \mathrm{e}^x\right)+\mathrm{c}$$, where $$\mathrm{c}$$ is a constant of integration.
C
$$\tan \left(\mathrm{e}^x\right)+\mathrm{c}$$, where $$\mathrm{c}$$ is a constant of integration.
D
$$-\cot \left(x \cdot \mathrm{e}^x\right)+\mathrm{c}$$, where $$\mathrm{c}$$ is a constant of integration.
3
MHT CET 2023 11th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $$\int \frac{\mathrm{d} x}{x \sqrt{1-x^3}}=\mathrm{k} \log \left(\frac{\sqrt{1-x^3}-1}{\sqrt{1-x^3}+1}\right)+\mathrm{c}$$, (where $$\mathrm{c}$$ is a constant of integration), then value of $$\mathrm{k}$$ is

A
$$\frac{2}{3}$$
B
$$-\frac{2}{3}$$
C
$$\frac{1}{3}$$
D
$$-\frac{1}{3}$$
4
MHT CET 2023 11th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

$$\int \frac{\log (\cot x)}{\sin 2 x} d x=$$

A
$$-\log (\cot x)^2+c$$, where c is constant of integration.
B
$$2(\log (\cot x))^2+c$$, where c is constant of integration.
C
$$\frac{-1}{4}(\log (\sin x))^2+c$$, where c is constant of integration.
D
$$\frac{-1}{4}(\log (\cot x))^2+\mathrm{c}$$, where c is constant of integration.
MHT CET Subjects
EXAM MAP