1
MHT CET 2023 13th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $$\mathrm{f}(x)=\int \frac{x^2 \mathrm{~d} x}{\left(1+x^2\right)\left(1+\sqrt{1+x^2}\right)}$$ and $$\mathrm{f}(0)=0$$, then $$\mathrm{f}(1)$$ is

A
$$\log (1+\sqrt{2})$$
B
$$\log (1+\sqrt{2})-\frac{\pi}{4}$$
C
$$\log (1+\sqrt{2})+\frac{\pi}{4}$$
D
$$\log (1-\sqrt{2})$$
2
MHT CET 2023 12th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

$$\int \frac{1}{\cos ^3 x \sqrt{\sin 2 x}} d x=$$

A
$$\sqrt{2}\left(\sqrt{\tan x}+\frac{1}{5}(\tan x)^{\frac{5}{2}}\right)+\mathrm{c}$$, where $$\mathrm{c}$$ is a constant of integration.
B
$$\left(\sqrt{\tan x}+\frac{2}{5}(\tan x)^{\frac{5}{2}}\right)+c$$, where c is a constant of integration.
C
$$\frac{1}{\sqrt{2}}\left(\sqrt{\tan x}+\frac{2}{5}(\tan x)^{\frac{5}{2}}\right)+\mathrm{c}$$, where $$\mathrm{c}$$ is a constant of integration.
D
$$2\left(\sqrt{\tan x}+\frac{1}{5}(\tan x)^{\frac{5}{2}}\right)+\mathrm{c}$$, where $$\mathrm{c}$$ is a constant of integration.
3
MHT CET 2023 12th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $$\int \frac{\sqrt{1-x^2}}{x^4} \mathrm{~d} x=\mathrm{A}(x)\left(\sqrt{1-x^2}\right)^{\mathrm{m}}+\mathrm{c}$$ for a suitable chosen integer $$\mathrm{m}$$ and a function $$\mathrm{A}(x)$$, where $$\mathrm{c}$$ is a constant of integration, then $$(\mathrm{A}(x))^{\mathrm{m}}$$ equals

A
$$\frac{1}{9 x^4}$$
B
$$\frac{-1}{3 x^3}$$
C
$$\frac{-1}{27 x^9}$$
D
$$\frac{1}{27 x^6}$$
4
MHT CET 2023 12th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

$$\int\left(\frac{\tan \left(\frac{1}{x}\right)}{x}\right)^2 d x=$$

A
$$x-\tan x+\mathrm{c}$$, where $$\mathrm{c}$$ is a constant of integration
B
$$\frac{1}{x}-\tan \left(\frac{1}{x}\right)+\mathrm{c}$$, where $$\mathrm{c}$$ is a constant of integration.
C
$$\frac{1}{x}+\tan \left(\frac{1}{x}\right)+\mathrm{c}$$, where $$\mathrm{c}$$ is a constant of integration.
D
$$x+\tan x+\mathrm{c}$$, where $$\mathrm{c}$$ is a constant of integration.
MHT CET Subjects
EXAM MAP