1
MHT CET 2024 15th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $\mathrm{f}(x)=\frac{x}{x+1}, x \neq-1$ and (fof) $(x)=\mathrm{F}(x)$, then $\int \mathrm{F}(x) \mathrm{d} x$ is

A
$\frac{x}{2}+\frac{1}{2} \log (2 x+1)+\mathrm{c}$, where c is a constant of integration.
B
$\frac{x}{2}-\frac{1}{4} \log (2 x+1)+\mathrm{c}$, where c is a constant of integration.
C
$\frac{x}{2}-\frac{1}{2} \log (2 x+1)+\mathrm{c}$, where c is a constant of integration.
D
$\frac{x}{2}+\frac{1}{4} \log (2 x+1)+\mathrm{c}$, where c is a constant of integration.
2
MHT CET 2024 15th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The value of $\int \frac{\mathrm{d} x}{7+6 x-x^2}$ is equal to

A
$\frac{1}{4} \log \left(\frac{1+x}{7-x}\right)+\mathrm{c}$, (where c is a constant of integration)
B
$\frac{1}{8} \log \left(\frac{7-x}{1+x}\right)+\mathrm{c}$, ( where c is a constant of integration)
C
$\frac{1}{4} \log \left(\frac{7-x}{1+x}\right)+\mathrm{c}$, (where c is a constant of integration)
D
$\frac{1}{8} \log \left(\frac{1+x}{7-x}\right)+\mathrm{c}$, (where c is a constant of integration)
3
MHT CET 2024 15th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $\int \frac{\mathrm{d} x}{1+3 \sin ^2 x}=\frac{1}{2} \tan ^{-1}(\mathrm{f}(x))+\mathrm{c}$, where c is a constant of integration, then $\mathrm{f}(x)$ is equal to

A
$2 \tan x$
B
$\tan x$
C
$2 \sin x$
D
$\sin x$
4
MHT CET 2024 15th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The value of $\int \frac{\sec x \cdot \tan x}{9-16 \tan ^2 x} \mathrm{dx}$ is equal to

A
$\frac{1}{24} \log \left(\frac{5+4 \sec x}{5-4 \sec x}\right)+\mathrm{c}$, (where c is a constant of integration)
B
$\frac{1}{40} \log \left(\frac{5+4 \sec x}{5-4 \sec x}\right)+\mathrm{c}$, (where c is a constant of integration)
C
$\frac{1}{24} \log \left(\frac{5-4 \sec x}{5+4 \sec x}\right)+\mathrm{c}$, (where c is a constant of integration)
D
$\frac{1}{40} \log \left(\frac{5-4 \sec x}{5+4 \sec x}\right)+\mathrm{c}$, (where c is a constant of integration)
MHT CET Subjects
EXAM MAP