1
MHT CET 2024 3rd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $\mathrm{f}\left(\frac{x-4}{x-2}\right)=2 x+1, x \in \mathbb{R}-\{1,-2\}$, then $\int \mathrm{f}(x) \mathrm{d} x$ is equal to

A
$5 x-4 \log (x-1)+\mathrm{c}$, where c is constant of integration.
B
$x-4 \log (x-1)+c$, where $c$ is constant of integration.
C
$5 x+4 \log (x-1)+\mathrm{c}$, where c is constant of integration.
D
$5 x+\log (x-1)+\mathrm{c}$, where c is constant of integration.
2
MHT CET 2024 3rd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The value of $\int \mathrm{e}^x\left(\frac{1-\sin x}{1-\cos x}\right) \mathrm{dx}$ is equal to

A
$-\mathrm{e}^x \cot \frac{x}{2}+\mathrm{c}$,(where c is a constant of integration)
B
$\mathrm{e}^x \cot \frac{x}{2}+\mathrm{c}$, (where c is a constant of integration)
C
$\mathrm{e}^x \operatorname{cosec} \frac{x}{2}+\mathrm{c}$,(where c is a constant of integration)
D
$-\mathrm{e}^x \operatorname{cosec} \frac{x}{2}+\mathrm{c}$, (where c is a constant of integration)
3
MHT CET 2024 3rd May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $\int \frac{\mathrm{d} x}{\cos ^3 x \sqrt{2 \sin 2 x}}=(\tan x)^A+C(\tan x)^B+K$, where K is a constant of integration, then the value of $5(A+B+C)$ is equal to

A
25
B
14
C
16
D
20
4
MHT CET 2024 3rd May Morning Shift
MCQ (Single Correct Answer)
+2
-0

$$\int \frac{2 x^2-1}{\left(x^2+4\right)\left(x^2-3\right)} d x=$$

A
$\frac{9}{14} \tan ^{-1}\left(\frac{x}{2}\right)+\frac{5}{14 \sqrt{3}} \log \left(\frac{x-\sqrt{3}}{x+\sqrt{3}}\right)+\mathrm{c}$, (where c is constant of integration)
B
$\frac{9}{7} \tan ^{-1}\left(\frac{x}{2}\right)+\frac{5}{7 \sqrt{3}} \log \left(\frac{x-\sqrt{3}}{x+\sqrt{3}}\right)+c$, (where c is constant of integration)
C
$\frac{9}{7} \tan ^{-1}\left(\frac{x}{2}\right)-\frac{5}{7 \sqrt{3}} \log \left(\frac{x-\sqrt{3}}{x+\sqrt{3}}\right)+\mathrm{c}$, (where c is constant of integration)
D
$\frac{9}{14} \tan ^{-1}\left(\frac{x}{2}\right)+\frac{5}{7} \log \left(\frac{x-\sqrt{3}}{x+\sqrt{3}}\right)+\mathrm{c}$, (where c is constant of integration)
MHT CET Subjects
EXAM MAP