1
MHT CET 2024 4th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $\int\left(\frac{4 e^x-25}{2 e^x-5}\right) d x=A x+B \log \left(2 e^x-5\right)+c \quad$ (where c is a constant of integration) then

A
$\mathrm{A}=5, \mathrm{~B}=3$
B
$\mathrm{A}=5, \mathrm{~B}=-3$
C
$\mathrm{A}=-5, \mathrm{~B}=3$
D
$\mathrm{A}=-5, \mathrm{~B}=-3$
2
MHT CET 2024 4th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

$$\int \tan ^{-1}\left(\frac{1-\sin x}{1+\sin x}\right) d x=$$

A
$\frac{\pi}{4} x-x+c$, where $c$ is a constant of integration.
B
$\frac{\pi}{4}-\frac{x}{2}+\mathrm{c}$, where c is a constant of integration.
C
$\frac{\pi}{4} x-\frac{x^2}{4}+c$, where c is a constant of integration.
D
$\frac{\pi}{4} x+\frac{x^2}{4}+\mathrm{c}$, where c is a constant of integration.
3
MHT CET 2024 4th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

$$\int \frac{\left(x^2+1\right)}{(x+1)^2} \mathrm{~d} x=$$

A
$ x-2 \log |(x+1)|-\frac{1}{x+1}+c$, where $c$ is a constant of integration.
B
$ x-2 \log |(x+1)|-\frac{2}{x+1}+c$, where c is a constant of integration.
C
  $ x-\log |(x+1)|-\frac{2}{x+1}+c$, where $c$ is a constant of integration.
D
$x-\log |(x+1)|-\frac{x}{x+1}+\mathrm{c}$, where c is a constant of integration.
4
MHT CET 2024 4th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

$\int\left(1+x-\frac{1}{x}\right) e^{x+\frac{1}{x}} d x$ equal to

A
$(x+1) e^{x+\frac{1}{x}}+c$, (where $c$ is a constant of integration)
B
$-x e^{x+\frac{1}{x}}+c$, (where $c$ is a constant of integration)
C
$(x-1) e^{x+\frac{1}{x}}+c$, (where $c$ is a constant of integration)
D
$x e^{x+\frac{1}{x}}+c$, (where $c$ is a constant of integration)
MHT CET Subjects
EXAM MAP