1
MHT CET 2025 20th April Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $\int \frac{2 x+3}{(x-1)\left(x^2+1\right)} d x$

$$ =\log _e\left\{(x-1)^{\frac{5}{2}}\left(x^2+1\right)^2\right\}-\frac{1}{2} \tan ^{-1} x+\mathrm{A} $$

where A is an arbitrary constant, then the value of $a$ is

A
$\frac{5}{4}$
B
$-\frac{5}{4}$
C
$-\frac{5}{3}$
D
$-\frac{5}{6}$
2
MHT CET 2025 20th April Morning Shift
MCQ (Single Correct Answer)
+2
-0

$$ \int \frac{d x}{2+\cos x}= $$

A

$2 \tan ^{-1}\left(\frac{1}{\sqrt{3}} \tan \frac{x}{2}\right)+c$, where $c$ is the constant of integration

B

$\frac{2}{\sqrt{3}} \tan ^{-1}\left(\frac{1}{\sqrt{3}} \tan \frac{x}{2}\right)+c$, where $c$ is the constant of integration

C

$\frac{1}{\sqrt{3}} \tan ^{-1}\left(\frac{1}{\sqrt{3}} \tan \frac{x}{2}\right)+\mathrm{c}$, where c is the constant of integration

D

$\sqrt{3} \tan ^{-1}\left(\frac{1}{\sqrt{3}} \tan \frac{x}{2}\right)+c$, where $c$ is the constant of integration

3
MHT CET 2025 19th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

$$ \int \frac{x+\sin x}{1+\cos x} d x= $$

A
$x \cos x+\mathrm{c}$, where c is the constant integration
B
$x \tan x+\mathrm{c}$, where c is the constant integration
C
$x \tan \frac{x}{2}+c$, where $c$ is the constant integration
D
$x \sec ^2 \frac{x}{2}+\mathrm{c}$, where c is the constant integration
4
MHT CET 2025 19th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $\int \tan ^4 x \mathrm{~d} x=\mathrm{a} \tan ^3 x+\mathrm{b} \tan x+\mathrm{c} x+\mathrm{k}$ (where k is the constant of integration) then the value of $\mathrm{a}-\mathrm{b}+\mathrm{c}=$

A
$\frac{7}{3}$
B
$\frac{5}{3}$
C
$\frac{4}{3}$
D
$\frac{1}{3}$
MHT CET Subjects
EXAM MAP