1
MHT CET 2024 11th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If for some $\alpha \in \mathbb{R}$, the lines $\mathrm{L}_1: \frac{x+1}{2}=\frac{y-2}{-1}=\frac{z-1}{1}$ and $\mathrm{L}_2: \frac{x+2}{\alpha}=\frac{y+1}{5-\alpha}=\frac{z+1}{1}$ are coplanar, then the line $L_2$ passes through the point

A
$(10,2,2)$
B
$(2,-10,-2)$
C
$(10,-2,-2)$
D
$(-2,10,2)$
2
MHT CET 2024 11th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

Let $P(3,2,6)$ be a point in space and $Q$ be a point on the line $\bar{r}=\hat{i}-\hat{j}+2 \hat{k}+\mu(-3 \hat{i}+\hat{j}+5 \hat{k})$. Then the value of $\mu$ for which the vector $\overline{\mathrm{PQ}}$ is parallel to the plane $x-4 y+3 z=1$ is

A
$\frac{1}{4}$
B
$-\frac{1}{4}$
C
$\frac{1}{8}$
D
$-\frac{1}{8}$
3
MHT CET 2024 11th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The perpendicular distance of the origin from the plane $2 x+y-2 z-18=0$ is

A
18 units
B
9 units
C
6 units
D
4 units
4
MHT CET 2024 11th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The plane $2 x+3 y+4 z=1$ meets $X$-axis in $A$, Y -axis in B and Z -axis in C . Then the centroid of $\triangle A B C$ is

A
$(2,3,4)$
B
$\left(\frac{1}{2}, \frac{1}{3}, \frac{1}{4}\right)$
C
$\left(\frac{1}{6}, \frac{1}{9}, \frac{1}{12}\right)$
D
$\left(\frac{3}{2}, \frac{3}{3}, \frac{3}{4}\right)$
MHT CET Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12