1
MHT CET 2021 22th September Morning Shift
MCQ (Single Correct Answer)
+2
-0

If a plane meets the axes $$\mathrm{X}, \mathrm{Y}, \mathrm{Z}$$ in $$\mathrm{A}, \mathrm{B}, \mathrm{C}$$ respectively such that centroid of $$\triangle \mathrm{ABC}$$ is $$(1,2,3)$$, then the equation of the plane is

A
$$x+2 y+3 z=1$$
B
$$x+\frac{y}{2}+\frac{z}{3}=3$$
C
$$\frac{x}{3}+\frac{y}{6}+\frac{z}{9}=1$$
D
$$\frac{x}{4}+\frac{y}{8}+\frac{z}{12}=1$$
2
MHT CET 2021 22th September Morning Shift
MCQ (Single Correct Answer)
+2
-0

The shortest distance between lines $$\bar{r}=(2 \hat{i}-\hat{j})+\lambda(2 \hat{i}+\hat{j}-3 \hat{k})$$ and $$\bar{r}=(\hat{r}-\hat{j}+2 \hat{k})+\mu(2 \hat{i}+\hat{j}-5 \hat{k})$$ is

A
$$\frac{1}{\sqrt{5}}$$
B
3 units
C
$$\sqrt{5}$$ units
D
2 units
3
MHT CET 2021 21th September Evening Shift
MCQ (Single Correct Answer)
+2
-0

The direction cosines $$\ell, \mathrm{m}, \mathrm{n}$$ of the line $$\frac{\mathrm{x}+2}{2}=\frac{2 \mathrm{y}-5}{3} ; \mathrm{z}=-1$$ are

A
$$\ell= \pm \frac{1}{\sqrt{5}}, \mathrm{~m}=0, \mathrm{n}= \pm \frac{2}{\sqrt{5}}$$
B
$$\ell= \pm \frac{3}{5}, \mathrm{~m}= \pm \frac{4}{5}, \mathrm{n}=0$$
C
$$\ell= \pm \frac{4}{5}, \mathrm{~m}= \pm \frac{3}{5}, \mathrm{n}=0$$
D
$$\ell= \pm \frac{1}{\sqrt{3}}, \mathrm{~m}= \pm \frac{1}{\sqrt{3}}, \mathrm{n}= \pm \frac{1}{\sqrt{3}}$$
4
MHT CET 2021 21th September Evening Shift
MCQ (Single Correct Answer)
+2
-0

Equation of the plane passing through the point (2, 0, 5) and parallel to the vectors $$\widehat i - \widehat j + \widehat k$$ and $$3\widehat i + 2\widehat j - \widehat k$$ is

A
$$\mathrm{x-4y-z+3=0}$$
B
$$\mathrm{x+4y+5z-27=0}$$
C
$$\mathrm{x-4y-5z+23=0}$$
D
$$\mathrm{x-4y+z-7=0}$$
MHT CET Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12