1
MHT CET 2023 9th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $$ I=\int \frac{\sin x+\sin ^3 x}{\cos 2 x} d x=P \cos x+Q \log \left|\frac{\sqrt{2} \cos x-1}{\sqrt{2} \cos x+1}\right| $$ (where $$c$$ is a constant of integration), then values of $$\mathrm{P}$$ and $$\mathrm{Q}$$ are respectively

A
$$\frac{1}{2}, \frac{3}{4 \sqrt{2}}$$
B
$$\frac{1}{2}, \frac{-3}{4 \sqrt{2}}$$
C
$$\frac{1}{2}, \frac{3}{2 \sqrt{2}}$$
D
$$\frac{1}{2}, \frac{-3}{2 \sqrt{2}}$$
2
MHT CET 2023 9th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

$$\int \frac{1}{\sin (x-a) \sin x} d x=$$

A
$$ \sin \mathrm{a}(\log (\sin (x-\mathrm{a}) \cdot \operatorname{cosec} x))+\mathrm{c}$$, where $$\mathrm{c}$$ is a constant of integration.
B
$$\operatorname{cosec} a(\log (\sin (x-a) \cdot \operatorname{cosec} x))+c$$, where $$\mathrm{c}$$ is a constant of integration.
C
$$-\sin \mathrm{a}(\log (\sin (x-\mathrm{a}) \cdot \sin x))+\mathrm{c}$$, where c is a constant of integration.
D
$$-\operatorname{cosec} \mathrm{a}(\log (\sin (x-\mathrm{a}) \cdot \sin x))+\mathrm{c}$$, where $$\mathrm{c}$$ is a constant of integration.
3
MHT CET 2021 21th September Evening Shift
MCQ (Single Correct Answer)
+2
-0

$$\int \frac{1}{x^{\frac{1}{2}}+x^{\frac{1}{3}}} d x=$$

A
$$\sqrt{\mathrm{x}}-\sqrt[3]{\mathrm{x}}+\sqrt[6]{\mathrm{x}}-\log |\sqrt[6]{\mathrm{x}}+1|+c$$
B
$$2 \sqrt{\mathrm{x}}-3 \sqrt[3]{\mathrm{x}}+6 \sqrt[6]{\mathrm{x}}-6 \log |\sqrt[6]{\mathrm{x}}+1|+\mathrm{c}$$
C
$$2 \sqrt{\mathrm{x}}+3 \sqrt[3]{\mathrm{x}}+6 \sqrt[6]{\mathrm{x}}+6 \log |\sqrt[6]{\mathrm{x}}+1|+c$$
D
$$\sqrt{\mathrm{x}}+\sqrt[3]{\mathrm{x}}+\sqrt[6]{\mathrm{x}}+\log |\sqrt[6]{\mathrm{x}}+1|+\mathrm{c}$$
4
MHT CET 2021 21th September Evening Shift
MCQ (Single Correct Answer)
+2
-0

$$\int[\sin |\log x|+\cos |\log x|] d x=$$

A
$$\sin |\log x|+c$$
B
$$x \cos |\log x|+c$$
C
$$\cos |\log x|+c$$
D
$$x \sin |\log x|+c$$
MHT CET Subjects
EXAM MAP
Joint Entrance Examination
JEE MainJEE AdvancedWB JEEBITSATMHT CET
Medical
NEET
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN