Equation of the plane containing the straight line $\frac{x}{2}=\frac{y}{3}=\frac{z}{4}$ and perpendicular to the plane containing the straight lines $\frac{x}{3}=\frac{y}{4}=\frac{z}{2}$ and $\frac{x}{4}=\frac{y}{2}=\frac{z}{3}$ is
If $A(-4,5, P), B(3,1,4)$ and $C(-2,0, q)$ are the vertices of a triangle $A B C$ and $G(r, q, 1)$ is its centroid, then the value of $2 p+q-r$ is equal to
On which of the following lines lies the point of intersection of the line, $\frac{x-4}{2}=\frac{y-5}{2}=\frac{z-3}{1}$ and the plane $x+y+z=2$ ?
Equation of the plane containing the straight line $\frac{x}{3}=\frac{y}{2}=\frac{z}{4}$ and perpendicular to the plane containing the straight lines $\frac{x}{4}=\frac{y}{3}=\frac{z}{2}$ and $\frac{x}{2}=\frac{y}{-4}=\frac{z}{3}$ is