1
MHT CET 2025 22nd April Morning Shift
MCQ (Single Correct Answer)
+1
-0

An a.c. e.m.f. of peak value 230 V and frequency 50 Hz is connected to a circuit with $\mathrm{R}=11.5 \Omega, \mathrm{~L}=2.5 \mathrm{H}$ and a capacitor all in series. The value of capacitance is ' $C$ ' for the current in the circuit to be maximum. The value of ' $C$ ' and maximum current are respectively ( $\pi^2=10$ )

A
$4 \mu \mathrm{~F}, 20 \mathrm{~A}$
B
$5 \mu \mathrm{~F}, 10 \mathrm{~A}$
C
$2 \mu \mathrm{~F}, 20 \mathrm{~A}$
D
$8 \mu \mathrm{~F}, 12 \mathrm{~A}$
2
MHT CET 2025 21st April Evening Shift
MCQ (Single Correct Answer)
+1
-0

An ideal inductor of $\left(\frac{1}{\pi}\right) \mathrm{H}$ is connected in series with a $300 \Omega$ resistor. If a $20 \mathrm{~V}, 200 \mathrm{~Hz}$ alternating source is connected across the combination, the phase difference between the voltage and current is

A
$\tan ^{-1}\left(\frac{3}{4}\right)$
B
$\tan ^{-1}\left(\frac{4}{3}\right)$
C
$\tan ^{-1}\left(\frac{5}{4}\right)$
D
$\tan ^{-1}\left(\frac{4}{5}\right)$
3
MHT CET 2025 21st April Evening Shift
MCQ (Single Correct Answer)
+1
-0

An alternating e.m.f. having voltage $\mathrm{V}=\mathrm{V}_0 \sin \omega t$ is applied to a series L-C-R circuit. Given : $\left|X_L-X_C\right|=R$. The r.m.s. value of potential difference across capacitor will be

A
$\quad \mathrm{V}_0 \mathrm{R} \omega \mathrm{C}$
B
$\frac{\mathrm{V}_0}{\mathrm{R} \omega \mathrm{C}}$
C
$\frac{\mathrm{V}_0}{2 \mathrm{R} \omega \mathrm{C}}$
D
$\frac{\mathrm{V}_0}{\sqrt{2} \mathrm{R} \omega \mathrm{C}}$
4
MHT CET 2025 21st April Evening Shift
MCQ (Single Correct Answer)
+1
-0

In an electrical circuit ' $R$ ', ' $L$ ', ' $C$ ' and an a.c. voltage source are all connected in series. When ' L ' is removed from the circuit, the phase difference between the voltage and the current in the circuit is $\frac{\pi}{3}$. If instead ' $C$ ' is removed from the circuit, the phase difference is again $\frac{\pi}{3}$. The power factor of the circuit is $\left(\tan \frac{\pi}{3}=\sqrt{3}\right)$

A
$\frac{\sqrt{3}}{2}$
B
$\frac{1}{2}$
C
$\frac{1}{\sqrt{2}}$
D
1
MHT CET Subjects
EXAM MAP