1
MHT CET 2020 16th October Evening Shift
MCQ (Single Correct Answer)
+1
-0

A thin uniform rod has mass $$M$$ and length $$L$$ The moment of inertia about an axis perpendicular to it and passing through the point at a distance $$\frac{L}{3}$$ from one of its ends, will be

A
$$\frac{M L^2}{12}$$
B
$$\frac{7}{8} M L^2$$
C
$$\frac{M L^2}{9}$$
D
$$\frac{M L^2}{3}$$
2
MHT CET 2020 16th October Evening Shift
MCQ (Single Correct Answer)
+1
-0

The ratio of radii of gyration of a ring to a disc (both circular) of same radii and mass, about a tangential axis perpendicular to the plane is

A
$$\frac{\sqrt{3}}{\sqrt{2}}$$
B
$$\frac{2}{\sqrt{5}}$$
C
$$\frac{\sqrt{2}}{1}$$
D
$$\frac{2}{\sqrt{3}}$$
3
MHT CET 2020 16th October Morning Shift
MCQ (Single Correct Answer)
+1
-0

If there is a change of angular momentum from $$1 \mathrm{j}$$-$$\mathrm{s}$$ to $$4 \mathrm{j}$$-$$\mathrm{s}$$ in $$4 \mathrm{~s}$$, then the torque

A
$$\left(\frac{5}{4}\right) \mathrm{J}$$
B
$$\left(\frac{3}{4}\right) \mathrm{J}$$
C
$$1 \mathrm{~J}$$
D
$$\left(\frac{4}{3}\right) \mathrm{J}$$
4
MHT CET 2020 16th October Morning Shift
MCQ (Single Correct Answer)
+1
-0

A solid cylinder of radius $$r$$ and mass $$M$$ rolls down an inclined plane of height $$h$$. When it reaches the bottom of the plane, then its rotational kinetic energy is ($$g=$$ acceleration due to gravity)

A
$$\frac{M g h}{4}$$
B
$$\frac{M g h}{2}$$
C
$$M g h$$
D
$$\frac{M g h}{3}$$
MHT CET Subjects
EXAM MAP