1
MHT CET 2024 4th May Morning Shift
MCQ (Single Correct Answer)
+1
-0

A solid cylinder of mass M and radius R is rotating about its geometrical axis. A solid sphere of the same mass and same radius is also rotating about its diameter with an angular speed half that of the cylinder. The ratio of the kinetic energy of rotation of the sphere to that of the cylinder will be

A
$1: 4$
B
$1: 5$
C
$2: 3$
D
$3: 2$
2
MHT CET 2024 3rd May Evening Shift
MCQ (Single Correct Answer)
+1
-0

The earth is assumed to be a sphere of radius ' $R$ ' and mass ' $M$ ' having period of rotation ' $T$ '. The angular momentum of earth about its axis of rotation is

A
$\frac{2 \pi \mathrm{MR}^2}{5 \mathrm{~T}}$
B
$\frac{4 \pi \mathrm{MR}^2}{5 \mathrm{~T}}$
C
$\frac{\mathrm{MR}^2 \mathrm{~T}}{2 \pi}$
D
$\frac{\mathrm{MR}^2 \mathrm{~T}}{4 \pi}$
3
MHT CET 2024 3rd May Evening Shift
MCQ (Single Correct Answer)
+1
-0

Two loops ' $A$ ' and ' $B$ ' of radii ' $R_1$ ' and ' $R_2$ ' are made from uniform wire. If moment of inertia of ' A ' is ' $\mathrm{I}_{\mathrm{A}}$ ' and that ' B ' is ' $\mathrm{I}_{\mathrm{B}}$ ', then $\mathrm{R}_2 / \mathrm{R}_1$ is $\left[\frac{\mathrm{I}_{\mathrm{A}}}{\mathrm{I}_{\mathrm{B}}}=27\right]$

A
$1: 6$
B
$1: 4$
C
$1: 3$
D
$1: 2$
4
MHT CET 2024 3rd May Morning Shift
MCQ (Single Correct Answer)
+1
-0

In case of rotational dynamics, which one of the following statements is correct?

[$\vec{\omega}=$ angular velocity, $\overrightarrow{\mathrm{v}}=$ linear velocity

$\overrightarrow{\mathbf{r}}=$ radius vector, $\vec{\alpha}=$ angular acceleration

$\overrightarrow{\mathrm{a}}=$ linear acceleration, $\overrightarrow{\mathrm{L}}=$ angular momentum

$\overrightarrow{\mathrm{p}}=$ linear momentum, $\bar{\tau}=$ torque,

$\overrightarrow{\mathrm{f}}=$ centripetal force]

A
$\overrightarrow{\mathbf{v}}=\overrightarrow{\mathbf{r}} \times \vec{\omega}, \overrightarrow{\boldsymbol{\alpha}}=\overrightarrow{\mathbf{r}} \times \vec{a}, \vec{L}=\overrightarrow{\mathrm{r}} \times \overrightarrow{\mathrm{p}}, \vec{\tau}=\overrightarrow{\mathrm{f}} \times \overrightarrow{\mathrm{r}}$
B
$\overrightarrow{\mathrm{v}}=\vec{\omega} \times \overrightarrow{\mathrm{r}}, \vec{\alpha}=\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{r}}, \overrightarrow{\mathrm{L}}=\overrightarrow{\mathrm{p}} \times \overrightarrow{\mathrm{r}}, \vec{\tau}=\overrightarrow{\mathrm{r}} \times \overrightarrow{\mathrm{f}}$
C
$\overrightarrow{\mathrm{v}}=\vec{\omega} \times \overrightarrow{\mathrm{r}}, \vec{\alpha}=\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{r}}, \overrightarrow{\mathrm{L}}=\overrightarrow{\mathrm{r}} \times \overrightarrow{\mathrm{p}}, \vec{\tau}=\overrightarrow{\mathrm{r}} \times \overrightarrow{\mathrm{f}}$
D
$\overrightarrow{\mathrm{v}}=\vec{\omega} \times \overrightarrow{\mathrm{r}}, \vec{\alpha}=\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{r}}, \overrightarrow{\mathrm{L}}=\overrightarrow{\mathrm{p}} \cdot \overrightarrow{\mathrm{r}}, \vec{\tau}=\overrightarrow{\mathrm{r}} \times \overrightarrow{\mathrm{f}}$
MHT CET Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12