A solid cylinder of mass $$3 \mathrm{~kg}$$ is rolling on a horizontal surface with velocity $$4 \mathrm{~m} / \mathrm{s}$$. It collides with a horizontal spring whose one end is fixed to rigid support. The force constant of material of spring is $$200 \mathrm{~N} / \mathrm{m}$$. The maximum compression produced in the spring will be (assume collision between cylinder & spring be elastic)
A thin wire of length '$$L$$' and uniform linear mass density '$$m$$' is bent into a circular coil. The moment of inertia of this coil about tangential axis and in plane of the coil is
In $$\mathrm{P}^{\text {th }}$$ second, a particle describes angular displacement of '$$\beta$$' rad. If it starts from rest, the angular acceleration is
$$I_1$$ is the moment of inertia of a circular disc about an axis passing through its centre and perpendicular to the plane of disc. $$I_2$$ is its moment of inertia about an axis $$A B$$ perpendicular to plane and parallel to axis $$\mathrm{CM}$$ at a distance $$\frac{2 R}{3}$$ from centre. The ratio of $$I_1$$ and $$I_2$$ is $$x: 17$$. The value of '$$x$$' is (R = radius of the disc)