A single slit of width $d$ is illuminated by violet light of wavelength 400 nm and the width of the diffraction pattern is measured as ' Y '. When half of the slit width is covered and illuminated by yellow light of wavelength 600 nm , the width of the diffraction pattern is
In a biprism experiment, monochromatic light of wavelength ' $\gamma$ ' is used. The distance between the two coherent sources ' $d$ ' is kept constant. If the distance between slit and eyepiece ' $D$ ' is varied as $D_1, D_2, D_3, D_4$ and corresponding measured fringe widths are $\mathrm{W}_1, \mathrm{~W}_2, \mathrm{~W}_3, \mathrm{~W}_4$ then
Three identical polaroids $P_1, P_2$ and $P_3$ are placed one after another. The pass axis of $P_2$ and $P_3$ are inclined at an angle $60^{\circ}$ and $90^{\circ}$ with respect to axis of $P_1$. The source has an intensity $I_0$. The intensity of transmitted light through $P_3$ is $\left(\cos 60^{\circ}=0.5, \cos 30^{\circ}=\frac{\sqrt{3}}{2}\right)$
In Young's double slit experiment, in an interference pattern, second minimum is observed exactly in front of one slit. The distance between the two coherent sources is ' $d$ ' and the distance between the source and screen is ' $D$ '. The wave length of light $(\lambda)$ used is