1
MHT CET 2023 14th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

A line with positive direction cosines passes through the point $$\mathrm{P}(2,-1,2)$$ and makes equal angles with the co-ordinate axes. The line meets the plane $$2 x+y+z=9$$ at point $$\mathrm{Q}$$. The length of the line segment $$P Q$$ equals

A
3
B
$$\sqrt{2}$$
C
$$\sqrt{3}$$
D
2
2
MHT CET 2023 14th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If the shortest distance between the lines $$\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{\lambda}$$ and $$\frac{x-2}{1}=\frac{y-4}{4}=\frac{z-5}{5}$$ is $$\frac{1}{\sqrt{3}}$$, then sum of possible values of $$\lambda$$ is

A
16
B
11
C
12
D
15
3
MHT CET 2023 14th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

Consider the lines $$\mathrm{L}_1: \frac{x+1}{3}=\frac{y+2}{1}=\frac{\mathrm{z}+1}{2}$$

$$\mathrm{L}_2: \frac{x-2}{1}=\frac{y+2}{2}=\frac{\mathrm{z}-3}{3}$$, then the unit vector perpendicular to both $$\mathrm{L}_1$$ and $$\mathrm{L}_2$$ is

A
$$\frac{-\hat{i}+7 \hat{j}+5 \hat{k}}{5 \sqrt{3}}$$
B
$$\frac{-\hat{i}-7 \hat{j}+5 \hat{k}}{5 \sqrt{3}}$$
C
$$\frac{+\hat{i}-7 \hat{j}+5 \hat{k}}{5 \sqrt{3}}$$
D
$$\frac{\hat{i}+7 \hat{j}+5 \hat{k}}{5 \sqrt{3}}$$
4
MHT CET 2023 13th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

A tetrahedron has vertices at $$P(2,1,3), Q(-1,1,2), R(1,2,1)$$ and $$O(0,0,0)$$, then angle between the faces $$O P Q$$ and $$P Q R$$ is

A
$$\cos ^{-1}\left(\frac{5}{7 \sqrt{59}}\right)$$
B
$$\cos ^{-1}\left(\frac{\sqrt{25}}{\sqrt{59} \cdot \sqrt{35}}\right)$$
C
$$\cos ^{-1}\left(\frac{5}{413}\right)$$
D
$$\cos ^{-1}\left(\frac{25}{\sqrt{59} \sqrt{35}}\right)$$
MHT CET Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12