A line with positive direction cosines passes through the point $\mathrm{P}(2,-1,2)$ and makes equal angles with co-ordinate axes. The line meets the plane $2 x+y+z=9$ at point Q. Then the length of the line segment PQ equals
If the distance between the plane Ax-2y+z $=\mathrm{d}$ and the plane containing the lines $\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}$ and $\frac{x-2}{3}=\frac{y-3}{4}=\frac{z-4}{5}$ is $\sqrt{6}$ units, then $|d|$ is
The length of the projection of the line segment joining the points $(5,-1,4)$ and $(4,-1,3)$ on the plane $x+y+z=7$ is
A line makes $45^{\circ}$ angle with positive X -axis and makes equal angles with positive Y -axis ad Z-axis respectively, then the sum of the three angles which the line makes with positive X -axis, Y -axis and Z -axis is