1
MHT CET 2025 20th April Morning Shift
MCQ (Single Correct Answer)
+1
-0

A conducting sphere of radius ' R ' is given a charge ' $Q$ ' uniformly. The electric field and the electric potential at the centre of the sphere are respectively [ $\varepsilon_0=$ permittivity of free space]

A
zero and $\frac{Q}{4 \pi \varepsilon_0 R}$
B
$\frac{\mathrm{Q}}{4 \pi \varepsilon_0 \mathrm{R}^2}$ and zero
C
$\frac{\mathrm{Q}}{4 \pi \varepsilon_0 \mathrm{R}}$ and $\frac{\mathrm{Q}}{4 \pi \varepsilon_0 \mathrm{R}^2}$
D
zero and zero
2
MHT CET 2025 20th April Morning Shift
MCQ (Single Correct Answer)
+1
-0

' n ' small spherical drops of same size which are charged to ' $V$ ' volt each coalesce to form a single big drop. The potential of the big drop is

A
$\frac{V}{n}$
B
$n \cdot V$
C
$n^{1 / 3} \cdot V$
D
$\mathrm{n}^{2 / 3} \cdot \mathrm{~V}$
3
MHT CET 2025 19th April Evening Shift
MCQ (Single Correct Answer)
+1
-0

The electric potential ' V ' is given as a function of distance ' $x$ ' (metre) by $V=\left(4 x^2+8 x-3\right) V$. The value of electric field at $x=0.5 \mathrm{~m}$, in $\mathrm{V} / \mathrm{m}$ is

A
-16
B
-12
C
0
D
+12
4
MHT CET 2025 19th April Evening Shift
MCQ (Single Correct Answer)
+1
-0

A uniformly charged conducting sphere of diameter 3.5 cm has a surface charge density of $20 \mu \mathrm{Cm}^{-2}$. The total electric flux leaving the surface of the sphere is nearly [permittivity of free space, $\varepsilon_0=8.85 \times 10^{-12} \mathrm{SI}$ unit]

A
$57 \times 10^2 \mathrm{~Wb}$
B
$70 \times 10^2 \mathrm{~Wb}$
C
$87 \times 10^2 \mathrm{~Wb}$
D
$35 \times 10^3 \mathrm{~Wb}$
MHT CET Subjects
EXAM MAP