Two positive ions, each carrying a charge 'q' are separated by a distance 'd'. If 'F' is the force of repulsion between the ions, the number of electrons from each ion will be ($$\varepsilon$$ = charge on $$\varepsilon_k$$ = permittivity of free space)
Three charges $$-\mathrm{q}, \mathrm{Q}$$ and $$-\mathrm{q}$$ are placed at equal distances on a straight line. If the total potential energy of the system of three charges is zero then the ratio $$\frac{Q}{q}$$ is
Two point charges $$+3 \mu \mathrm{C}$$ and $$+8 \mu \mathrm{C}$$ repel each other with a force of $$40 \mathrm{~N}$$. If a charge of $$-5 \mu \mathrm{C}$$ is added to each of them, then force between them will become
In hydrogen atom an electron revolves around a proton (in nucleus) at a distance 'r' m. the intensity of electric field due to the proton at distance 'r' is $$5 \times 10^{11} \mathrm{NC}^{-1}$$, the magnitude of force between the electron and proton is [charge on electron $$=1.6 \times 10^{-19} \mathrm{C}$$]