When a charge of $$3 ~\mathrm{C}$$ is placed in uniform electric field, it experiences a force of $$3000 \mathrm{~N}$$. Within this field, potential difference between two points separated by a distance of $$1 \mathrm{~cm}$$ is
The charges $$2 \mathrm{q},-\mathrm{q},-\mathrm{q}$$ are located at the vertices of an equilateral triangle. At the circumcentre of the triangle
A solid metallic sphere has a charge $$+3 Q$$. Concentric with this sphere is a conducting spherical shell having charge $$-\mathrm{Q}$$. The radius of the sphere is '$$A$$' and that of the spherical shell is '$$B$$'. $$(B > A)$$. The electric field at a distance '$$\mathrm{R}$$' $$(\mathrm{A} < \mathrm{R} < \mathrm{B})$$ from the centre is ( $$\varepsilon_0=$$ permittivity of vacuum)
If the radius of the spherical gaussian surface is increased then the electric flux due to a point charge enclosed by the surface