1
MHT CET 2025 21st April Evening Shift
MCQ (Single Correct Answer)
+1
-0

The electric field intensity on the surface of a solid charged sphere of radius $\mathbf{r}$ and volume charge density $\sigma$ is ( $\varepsilon_0=$ permittivity of free space)

A
zero
B
$\frac{5 \sigma r}{6 \varepsilon_0}$
C
$\frac{1}{4 \pi \varepsilon_0} \frac{\sigma}{\mathrm{r}}$
D
$\frac{\sigma \mathrm{r}}{3 \varepsilon_0}$
2
MHT CET 2025 21st April Morning Shift
MCQ (Single Correct Answer)
+1
-0

The electric charges ' $+2 q$ ', ' $+2 q$ ', ' $-2 q$ ' and ' $-2 q$ ' are placed at the corners of square of side ' 2 L ' as shown in figure. The electric potential at point 'A', midway between the two charges ' $+2 q$ ' and ' $+2 q$ ' is

( $\varepsilon_0=$ permittivity of free space)

MHT CET 2025 21st April Morning Shift Physics - Electrostatics Question 17 English
A
$\quad \frac{1}{4 \pi \varepsilon_0}\left(\frac{2 q}{L}\right)\left[1+\frac{1}{\sqrt{5}}\right]$
B
$\frac{\mathrm{q}}{\pi \varepsilon_0 \mathrm{~L}}\left[1-\frac{1}{\sqrt{5}}\right]$
C
$\frac{\mathrm{q}}{\pi \varepsilon_0 \mathrm{~L}}\left[1+\frac{1}{\sqrt{5}}\right]$
D
$\frac{1}{4 \pi \varepsilon_0}\left(\frac{2 q}{L}\right)\left[1-\frac{1}{\sqrt{5}}\right]$
3
MHT CET 2025 21st April Morning Shift
MCQ (Single Correct Answer)
+1
-0

An electric dipole having each charge of magnitude $2 \mu \mathrm{C}$ is placed in an electric field of intensity $8 \times 10^{+4} \mathrm{~N} / \mathrm{C}$. If the maximum torque acting on the dipole is $4 \times 10^{-3} \mathrm{~N}-\mathrm{m}$, the length of the dipole is

A
10 mm
B
25 mm
C
15 mm
D
20 mm
4
MHT CET 2025 20th April Evening Shift
MCQ (Single Correct Answer)
+1
-0
A hollow cylinder has a charge ' $q$ ' coulomb within it. If ' $\phi$ ' is the electric flux in unit of V-m associated with the curved surface C , the flux linked with the plane surface ' $A$ ' in unit of V-m will be [ $\varepsilon_0=$ permittivity of free space]0MHT CET 2025 20th April Evening Shift Physics - Electrostatics Question 19 English
A
$\frac{\phi}{3}$
B
$\left(\frac{\mathrm{q}}{\varepsilon_0}-\phi\right)$
C
$\quad \frac{1}{2}\left(\frac{\mathrm{q}}{\mathrm{\varepsilon}_0}-\phi\right)$
D
$\frac{\mathrm{q}}{2 \varepsilon_0}$
MHT CET Subjects
EXAM MAP