1
MHT CET 2021 24th September Morning Shift
+1
-0

The electric field intensity on the surface of a charged solid sphere of radius '$$r$$' and volume charge dentiy '$$\rho$$' is given by ($$\epsilon_0=$$ permittivity of free space)

A
zero
B
$$\frac{\sigma \pi}{3 \epsilon_0}$$
C
$$\frac{1}{4 \pi \epsilon_0} \frac{\sigma}{r}$$
D
$$\frac{5 \pi}{6 \epsilon_0}$$
2
MHT CET 2021 24th September Morning Shift
+1
-0

Let A, B and C be the three points in a uniform electric field $$\text { ( } \overrightarrow{\mathrm{E}})$$ as shown. The electric potential is

A
maximum at point $$\mathrm{C}$$
B
maximum at point $$\mathrm{A}$$
C
maximum at point $$\mathrm{B}$$
D
same at all points $$\mathrm{A}, \mathrm{B}$$ and $$\mathrm{C}$$
3
MHT CET 2021 23rd September Evening Shift
+1
-0

Two positive ions, each carrying a charge 'q' are separated by a distance 'd'. If 'F' is the force of repulsion between the ions, the number of electrons from each ion will be ($$\varepsilon$$ = charge on $$\varepsilon_k$$ = permittivity of free space)

A
$$\sqrt{\frac{4 \pi \varepsilon_0 \mathrm{~d}^2}{\mathrm{e}^2}}$$
B
$$\sqrt{\frac{4 \pi \varepsilon_0 \mathrm{Fd}}{\mathrm{e}^2}}$$
C
$$\sqrt{\frac{4 \pi \varepsilon_0 F d^2}{\mathrm{e}}}$$
D
$$\sqrt{\frac{4 \pi \varepsilon_0 \mathrm{Fd}^2}{\mathrm{e}^2}}$$
4
MHT CET 2021 23rd September Evening Shift
+1
-0

Three charges $$-\mathrm{q}, \mathrm{Q}$$ and $$-\mathrm{q}$$ are placed at equal distances on a straight line. If the total potential energy of the system of three charges is zero then the ratio $$\frac{Q}{q}$$ is

A
$$1: 2$$
B
$$1: 1$$
C
$$1: 4$$
D
$$1: 3$$
EXAM MAP
Medical
NEET