1
MHT CET 2025 20th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

$$ \int \frac{\mathrm{e}^{\tan ^{-1} 2 x}}{1+4 x^2}= $$

A
$4 \mathrm{e}^{\tan ^{-1} 2 x}+\mathrm{c}$, where c is the constant of integration
B
$\mathrm{e}^{\tan ^{-1} 2 x}+\mathrm{c}$, where c is the constant of integration
C
$\frac{\mathrm{e}^{\tan ^{-1} 2 x}}{2}+\mathrm{c}$, where c is the constant of integration
D
$2 \mathrm{e}^{\tan ^{-1} 2 x}+\mathrm{c}$, where c is the constant of integration
2
MHT CET 2025 20th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

$$ \int \mathrm{e}^x \frac{(x-1)}{(x+1)^3} \mathrm{~d} x= $$

A
$\mathrm{e}^x(x+1)^2+\mathrm{c}$, where c is the constant of integration
B
$\mathrm{e}^x(x+1)^3+\mathrm{c}$, where c is the constant of integration
C
$\frac{\mathrm{e}^x}{(x+1)^2}+\mathrm{c}$, where c is the constant of integration
D
$\frac{\mathrm{e}^x}{(x+1)^3}+\mathrm{c}$, where c is the constant of integration
3
MHT CET 2025 20th April Morning Shift
MCQ (Single Correct Answer)
+2
-0

$$ \int \sin ^5 x \mathrm{~d} x= $$

A
$\cos x+\frac{2}{3} \cos ^2 x-\frac{\cos ^5 x}{5}+\mathrm{c}$, where c is the constant of integration
B
$\quad \cos x+\frac{2}{3} \cos ^2 x+\frac{\cos ^5 x}{5}+\mathrm{c}$, where c is the constant of integration
C
$-\left(\cos x-\frac{2}{3} \cos ^2 x+\frac{\cos ^5 x}{5}+\mathrm{c}\right)$, where c is the constant of integration
D
$\cos x-\frac{2}{3} \cos ^2 x+\frac{\cos ^5 x}{5}+\mathrm{c}$, where c is the constant of integration
4
MHT CET 2025 20th April Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $\int \frac{2 x+3}{(x-1)\left(x^2+1\right)} d x$

$$ =\log _e\left\{(x-1)^{\frac{5}{2}}\left(x^2+1\right)^2\right\}-\frac{1}{2} \tan ^{-1} x+\mathrm{A} $$

where A is an arbitrary constant, then the value of $a$ is

A
$\frac{5}{4}$
B
$-\frac{5}{4}$
C
$-\frac{5}{3}$
D
$-\frac{5}{6}$
MHT CET Subjects
EXAM MAP