1
MHT CET 2025 22nd April Morning Shift
MCQ (Single Correct Answer)
+2
-0

$$ \int \frac{\cos 2 x-\cos 2 \alpha}{\cos x-\cos \alpha} d x= $$

A
$2 \cos x+2 x \cos \alpha+\mathrm{c}$, where c is the constant of integration.
B
$2 \cos x-2 x \cos \alpha+\mathrm{c}$, where c is the constant of integration.
C
$2 \sin x+2 x \cos \alpha+c$, where $c$ is the constant of integration.
D
$2 \sin x+2 x \sin \alpha+c$, where $c$ is the constant of integration.
2
MHT CET 2025 22nd April Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $\int \frac{2 x^2+3}{\left(x^2-1\right)\left(x^2-4\right)} \mathrm{d} x=\log \left[\left(\frac{x-2}{x+2}\right)^{\mathrm{a}} \cdot\left(\frac{x+1}{x-1}\right)^{\mathrm{b}}\right]+\mathrm{c}$, (where c is the constant of integration) then the value of $a+b$ is equal to

A
$\frac{1}{12}$
B
$\frac{21}{12}$
C
$\frac{-1}{12}$
D
$\frac{-21}{12}$
3
MHT CET 2025 21st April Evening Shift
MCQ (Single Correct Answer)
+2
-0

$$ \int \frac{\sin x}{\sqrt{5 \sin ^2 x+6 \cos ^2 x}} d x $$

A

$\quad \log \left(\cos x+\sqrt{\cos ^2 x+5}\right)+\mathrm{c}$, where c is the constant of integration

B

$\quad \log \left(\sin x+\sqrt{6 \cos ^2 x+5}\right)+\mathrm{c}$, where c is the constant of integration

C

$-\log \left(\cos x+\sqrt{\cos ^2 x+6}\right)+\mathrm{c}$, where c is the constant of integration

D

$-\log \left(\cos x+\sqrt{\cos ^2 x+5}\right)+\mathrm{c}$, where c is the constant of integration

4
MHT CET 2025 21st April Evening Shift
MCQ (Single Correct Answer)
+2
-0

$$ \int \cos \left(\frac{x}{16}\right) \cdot \cos \left(\frac{x}{8}\right) \cdot \cos \left(\frac{x}{4}\right) \cdot \sin \left(\frac{x}{16}\right) \mathrm{d} x= $$

A
$\frac{\cos 16 x}{256}+\mathrm{c}$, where c is the constant of integration
B
$\frac{-\cos 16 x}{256}+c$, where $c$ is the constant of integration
C
$\frac{\sin 16 x}{256}+c$, where $c$ is the constant of integration
D
$\frac{-\cos \left(\frac{x}{2}\right)}{4}+\mathrm{c}$, where $c$ is the constant of integration
MHT CET Subjects
EXAM MAP