1
MHT CET 2025 22nd April Evening Shift
MCQ (Single Correct Answer)
+1
-0

Given $\quad \vec{A}=(2 \hat{i}-3 \hat{j}+\hat{k}), \quad \vec{B}=(3 \hat{i}+\hat{j}-2 \hat{k})$ and $\vec{C}=(3 \hat{i}+2 \hat{j}+\hat{k}) \cdot(\vec{A}+\vec{B}) \cdot \vec{C}$ will be

A
10
B
12 c
C
18
D
20
2
MHT CET 2025 21st April Evening Shift
MCQ (Single Correct Answer)
+1
-0

A unit vector in the direction of resultant vector of $\vec{A}=-2 \hat{i}+3 \hat{j}+\hat{k}$ and $\vec{B}=\hat{i}+2 \hat{j}-4 \hat{k}$ is

A
$\frac{-3 \hat{\mathrm{i}}+\hat{\mathrm{j}}+5 \hat{\mathrm{k}}}{\sqrt{35}}$
B
$\frac{\hat{i}+2 \hat{j}-4 \hat{k}}{\sqrt{35}}$
C
$\frac{-2 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}+\hat{\mathrm{k}}}{\sqrt{35}}$
D
$\frac{-\hat{\mathrm{i}}+5 \hat{\mathrm{j}}-3 \hat{\mathrm{k}}}{\sqrt{35}}$
3
MHT CET 2025 21st April Morning Shift
MCQ (Single Correct Answer)
+1
-0

The three vector $\vec{A}=3 \hat{i}-2 \hat{j}+\hat{k}, \vec{B}=\hat{i}-3 \hat{j}+5 k$ and $\vec{C}=2 \hat{i}-\hat{j}+4 \hat{k}$ will form

A
isosceles triangle.
B
equilateral triangle.
C
no triangle.
D
right angled triangle.
4
MHT CET 2025 20th April Evening Shift
MCQ (Single Correct Answer)
+1
-0

Three vectors are expressed as $\vec{a}=4 \hat{i}-\hat{j}, \vec{b}=-3 \hat{i}+2 \hat{j}$ and $\vec{c}=-\hat{k}$. The unit vector along the direction of sum of these vectors is

A
$\frac{\hat{\mathrm{i}}+\hat{\mathrm{j}}-\hat{\mathrm{k}}}{\sqrt{3}}$
B
$\quad \frac{1}{3}(\hat{\mathrm{i}}-\hat{\mathrm{j}}+\hat{\mathrm{k}})$
C
$\frac{1}{\sqrt{2}}(\hat{\mathrm{i}}-\hat{\mathrm{j}}+\hat{\mathrm{k}})$
D
$\frac{1}{\sqrt{2}}(\hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}})$
MHT CET Subjects
EXAM MAP