1
MHT CET 2025 19th April Morning Shift
MCQ (Single Correct Answer)
+2
-0
 $$\int \frac{\sin 2 x}{(a+b \cos x)^2} d x=$$
A
$\frac{2}{a^2}\left[\log (a+b \cos x)-\frac{a}{a+b \cos x}\right]+c$ where c is the constant of integration.
B
$\frac{-1}{a^2}\left[\log (a+b \cos x)+\frac{a}{a+b \cos x}\right]+c$, where c is the constant of integration.
C
$\frac{-2}{b^2}\left[\log (a+b \cos x)+\frac{a}{a+b \cos x}\right]+c$ where c is the constant of integration.
D
$\frac{-2}{b^2}\left[\log (a+b \cos x)-\frac{a}{a+b \cos x}\right]+c$, where c is the constant of integration.
2
MHT CET 2024 16th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

$\int \frac{x^2-4}{x^4+9 x^2+16} \mathrm{dx}=\tan ^{-1}(\mathrm{f}(x))+\mathrm{c}$ (where c is a constant of integration), then value of $f(2)$ is

A
1
B
2
C
3
D
4
3
MHT CET 2024 16th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

$$\int \cos ^{\frac{-3}{7}} x \cdot \sin ^{\frac{-11}{7}} x d x=$$

A
$\frac{-4}{7} \tan ^{\frac{-4}{7}} x+c$, where $c$ is a constant of integration.
B
$\frac{4}{7} \tan ^{\frac{4}{7}} x+c$, where c is a constant of integration.
C
$\frac{-7}{4} \tan ^{\frac{-4}{7}} x+c$, where c is a constant of integration.
D
$\frac{7}{4} \tan ^{\frac{4}{7}} x+c$, where c is a constant of integration.
4
MHT CET 2024 16th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

$$\int \frac{\mathrm{e}^{\tan ^{-1} x}}{1+x^2}\left[\left(\sec ^{-1} \sqrt{1+x^2}\right)^2+\cos ^{-1}\left(\frac{1-x^2}{1+x^2}\right)\right] \mathrm{d} x,$$ where $x>0$ is

A
$\left(\tan ^{-1} x\right) \mathrm{e}^{\tan ^{-1} x}+\mathrm{c}$, where c is a constant of integration.
B
$\left(\tan ^{-1} x\right)^2 \mathrm{e}^{\tan ^{-1} x}+\mathrm{c}$, where c is a constant of integration.
C
$2\left(\tan ^{-1} x\right) \mathrm{e}^{\tan ^{-1} x}+\mathrm{c}$, where c is a constant of integration.
D
$2\left(\tan ^{-1} x\right)^2 \mathrm{e}^{\tan ^{-1} x}+\mathrm{c}$, where c is a constant of integration.
MHT CET Subjects
EXAM MAP