1
GATE ME 2014 Set 4
MCQ (Single Correct Answer)
+1
-0.3
The solution of the initial value problem $$\,\,{{dy} \over {dx}} = - 2xy;y\left( 0 \right) = 2\,\,\,$$ is
A
$$1 + {e^{ - {x^2}}}$$
B
$$2{e^{ - {x^2}}}$$
C
$$1 + {e^{ {x^2}}}$$
D
$$2{e^{ {x^2}}}$$
2
GATE ME 2013
MCQ (Single Correct Answer)
+1
-0.3
The partial differential equation $$\,\,{{\partial u} \over {\partial t}} + u{{\partial u} \over {\partial x}} = {{{\partial ^2}u} \over {\partial {x^2}}}\,\,\,$$ is a
A
Linear equation of order $$2$$
B
Non-linear equation of order $$1$$
C
Linear equation of order $$1$$
D
non-linear equation of order $$2$$
3
GATE ME 2011
MCQ (Single Correct Answer)
+1
-0.3
Consider the differential equation $${{dy} \over {dx}} = \left( {1 + {y^2}} \right)x\,\,.$$ The general solution with constant $$'C'$$ is
A
$$y = \tan \left( {{{{x^2}} \over 2}} \right) + C$$
B
$$y = {\tan ^2}\left( {{x \over 2} + C} \right)$$
C
$$y = {\tan ^2}\left( {{x \over 2}} \right) + C$$
D
$$y = \tan \left( {{{{x^2}} \over 2} + C} \right)$$
4
GATE ME 2010
MCQ (Single Correct Answer)
+1
-0.3
The blasius equation $$\,{{{d^3}f} \over {d{\eta ^3}}} + {f \over 2}\,{{{d^2}f} \over {d{\eta ^2}}} = 0\,\,\,\,$$ is a
A
2nd order non-linear ordinary differential equation
B
3rd order non-linear ordinary differential equation
C
3rd order linear ordinary differential equation
D
mixed order non-linear ordinary differential equation
GATE ME Subjects
Turbo Machinery
EXAM MAP
Medical
NEET
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
CBSE
Class 12