1
GATE ME 2011
+1
-0.3
Consider the differential equation $${{dy} \over {dx}} = \left( {1 + {y^2}} \right)x\,\,.$$ The general solution with constant $$'C'$$ is
A
$$y = \tan \left( {{{{x^2}} \over 2}} \right) + C$$
B
$$y = {\tan ^2}\left( {{x \over 2} + C} \right)$$
C
$$y = {\tan ^2}\left( {{x \over 2}} \right) + C$$
D
$$y = \tan \left( {{{{x^2}} \over 2} + C} \right)$$
2
GATE ME 2010
+1
-0.3
The blasius equation $$\,{{{d^3}f} \over {d{\eta ^3}}} + {f \over 2}\,{{{d^2}f} \over {d{\eta ^2}}} = 0\,\,\,\,$$ is a
A
2nd order non-linear ordinary differential equation
B
3rd order non-linear ordinary differential equation
C
3rd order linear ordinary differential equation
D
mixed order non-linear ordinary differential equation
3
GATE ME 2009
+1
-0.3
The solution of $$x{{dy} \over {dx}} + y = {x^4}$$ with condition $$y\left( 1 \right) = {6 \over 5}$$
A
$$y = {{{x^4}} \over 5} + {1 \over x}$$
B
$$y = {{4{x^4}} \over 5} + {4 \over {5x}}$$
C
$$y = {{{x^4}} \over 5} + 1$$
D
$$y = {{{x^5}} \over 5} + 1$$
4
GATE ME 2008
+1
-0.3
Given that $$\mathop x\limits^{ \bullet \bullet } + 3x = 0$$ and $$x\left( 0 \right) = 1,\,\,\mathop x\limits^ \bullet \left( 0 \right) = 1,$$ What is $$x(1)$$ ________.
A
$$-0.99$$
B
$$-0.16$$
C
$$0.41$$
D
$$0.99$$
GATE ME Subjects
Engineering Mechanics
Strength of Materials
Theory of Machines
Engineering Mathematics
Machine Design
Fluid Mechanics
Turbo Machinery
Heat Transfer
Thermodynamics
Production Engineering
Industrial Engineering
General Aptitude
EXAM MAP
Joint Entrance Examination