1
GATE ME 2015 Set 2
+1
-0.3
Consider the following differential equation $${{dy} \over {dt}} = - 5y;$$ initial condition: $$y=2$$ at $$t=0.$$
The value of $$y$$ at $$t=3$$ is
A
$$- 5{e^{ - 10}}$$
B
$$2{e^{ - 10}}$$
C
$$2{e^{ - 15}}$$
D
$$- 15{e^2}$$
2
GATE ME 2015 Set 1
+1
-0.3
Find the solution of $${{{d^2}y} \over {d{x^2}}} = y$$ which passes through origin and the point $$\left( {ln2,{3 \over 4}} \right)$$
A
$$y = {1 \over 2}{e^x} - {e^{ - x}}$$
B
$${1 \over 2}\left( {{e^x} + {e^{ - x}}} \right)$$
C
$$y = {1 \over 2}\left( {{e^x} - {e^{ - x}}} \right)$$
D
$${1 \over 2}{e^x} + {e^{ - x}}$$
3
GATE ME 2014 Set 4
+1
-0.3
The solution of the initial value problem $$\,\,{{dy} \over {dx}} = - 2xy;y\left( 0 \right) = 2\,\,\,$$ is
A
$$1 + {e^{ - {x^2}}}$$
B
$$2{e^{ - {x^2}}}$$
C
$$1 + {e^{ {x^2}}}$$
D
$$2{e^{ {x^2}}}$$
4
GATE ME 2013
+1
-0.3
The partial differential equation $$\,\,{{\partial u} \over {\partial t}} + u{{\partial u} \over {\partial x}} = {{{\partial ^2}u} \over {\partial {x^2}}}\,\,\,$$ is a
A
Linear equation of order $$2$$
B
Non-linear equation of order $$1$$
C
Linear equation of order $$1$$
D
non-linear equation of order $$2$$
GATE ME Subjects
EXAM MAP
Medical
NEET