1
GATE ME 1998
+1
-0.3
The general solution of the differential equation $${x^2}{{{d^2}y} \over {d{x^2}}} - x{{dy} \over {dx}} + y = 0$$ is
A
$$Ax + B{x^2}$$ ($$A, B$$ are constants)
B
$$Ax + B\log x$$ ($$A, B$$ are constants)
C
$$Ax + B{x^2}\log x$$ ($$A, B$$ are constants)
D
$$Ax + Bx\log x$$ ($$A, B$$ are constants)
2
GATE ME 1996
+1
-0.3
The particular solution for the differential equation $${{{d^2}y} \over {d{t^2}}} + 3{{dy} \over {dx}} + 2y = 5\cos x$$ is
A
$$0.5\,Cos\,x + 1.5\,Sin\,x$$
B
$$1.5\,Cos\,x + 0.5\,Sin\,x$$
C
$$1.5\,Sin\,x$$
D
$$0.5\,Cos\,x$$
3
GATE ME 1996
+1
-0.3
The one dimensional heat conduction partial difference equation $$\,\,{{\partial T} \over {\partial t}} = {{{\partial ^2}T} \over {\partial {x^2}}}\,\,$$ is
A
parabolic
B
hyperbolic
C
elliptic
D
mixed
4
GATE ME 1995
+1
-0.3
The solution to the differential equation $$\,{f^{11}}\left( x \right) + 4{f^1}\left( x \right) + 4f\left( x \right) = 0$$
A
$${f_1}\left( x \right) = {e^{ - 2x}}$$
B
$${f_1}\left( x \right) = {e^{2x}},\,\,{f_2}\left( x \right) = {e^{ - 2x}}$$
C
$${f_1}\left( x \right) = {e^{ - 2x}},\,\,{f_2}\left( x \right) = x{e^{ - 2x}}$$
D
$${f_1}\left( x \right) = {e^{ - 2x}},\,\,{f_2}\left( x \right) = {e^{ - x}}$$
GATE ME Subjects
EXAM MAP
Medical
NEET