1
GATE ME 2012
+1
-0.3
The inverse Laplace transform of the function $$F\left( s \right) = {1 \over {s\left( {s + 1} \right)}}$$ is given by
A
$$f\left( t \right) = \sin \,t$$
B
$$f\left( t \right) = {e^{ - t}}\sin \,t$$
C
$$f\left( t \right) = {e^{ - t}}$$
D
$$f\left( t \right) = 1 - {e^{ - t}}$$
2
GATE ME 2010
+1
-0.3
The Laplace transform of $$f\left( t \right)$$ is $${1 \over {{s^2}\left( {s + 1} \right)}}.$$
The function
A
$$t - 1 + {e^{ - t}}$$
B
$$t + 1 + {e^{ - t}}$$
C
$$- 1 + {e^{ - t}}$$
D
$$2t + {e^t}$$
3
GATE ME 2009
+1
-0.3
The inverse Laplace transform of $${1 \over {\left( {{s^2} + s} \right)}}$$ is
A
$$1 + {e^t}$$
B
$$1 - {e^t}$$
C
$$1 - {e^{ - t}}$$
D
$$1 + {e^{ - t}}$$
4
GATE ME 2007
+1
-0.3
If $$F(s)$$ is the Laplace transform of the function $$f(t)$$ then Laplace transform of $$\int\limits_0^t {f\left( x \right)dx}$$ is
A
$${1 \over s}F\left( s \right)$$
B
$${1 \over s}F\left( s \right) - f\left( 0 \right)$$
C
$$s\,F\left( s \right) - f\left( 0 \right)$$
D
$$\int {F\left( s \right)ds}$$
GATE ME Subjects
EXAM MAP
Medical
NEET