1
GATE ME 2012
+1
-0.3
The inverse Laplace transform of the function $$F\left( s \right) = {1 \over {s\left( {s + 1} \right)}}$$ is given by
A
$$f\left( t \right) = \sin \,t$$
B
$$f\left( t \right) = {e^{ - t}}\sin \,t$$
C
$$f\left( t \right) = {e^{ - t}}$$
D
$$f\left( t \right) = 1 - {e^{ - t}}$$
2
GATE ME 2010
+1
-0.3
The Laplace transform of $$f\left( t \right)$$ is $${1 \over {{s^2}\left( {s + 1} \right)}}.$$
The function
A
$$t - 1 + {e^{ - t}}$$
B
$$t + 1 + {e^{ - t}}$$
C
$$- 1 + {e^{ - t}}$$
D
$$2t + {e^t}$$
3
GATE ME 2009
+1
-0.3
The inverse Laplace transform of $${1 \over {\left( {{s^2} + s} \right)}}$$ is
A
$$1 + {e^t}$$
B
$$1 - {e^t}$$
C
$$1 - {e^{ - t}}$$
D
$$1 + {e^{ - t}}$$
4
GATE ME 2007
+1
-0.3
If $$F(s)$$ is the Laplace transform of the function $$f(t)$$ then Laplace transform of $$\int\limits_0^t {f\left( x \right)dx}$$ is
A
$${1 \over s}F\left( s \right)$$
B
$${1 \over s}F\left( s \right) - f\left( 0 \right)$$
C
$$s\,F\left( s \right) - f\left( 0 \right)$$
D
$$\int {F\left( s \right)ds}$$
GATE ME Subjects
Engineering Mechanics
Strength of Materials
Theory of Machines
Engineering Mathematics
Machine Design
Fluid Mechanics
Turbo Machinery
Heat Transfer
Thermodynamics
Production Engineering
Industrial Engineering
General Aptitude
EXAM MAP
Joint Entrance Examination