1
GATE ME 1994
Fill in the Blanks
+1
-0
If $$f(t)$$ is a finite and continuous Function for $$t \ge 0$$ the laplace transformation is given by
$$F = \int\limits_0^\infty {{e^{ - st}}\,\,f\left( t \right)dt,} $$ then for $$f(t)=cos$$ $$h$$ $$mt,$$ the laplace transformation is ___________.
$$F = \int\limits_0^\infty {{e^{ - st}}\,\,f\left( t \right)dt,} $$ then for $$f(t)=cos$$ $$h$$ $$mt,$$ the laplace transformation is ___________.
2
GATE ME 1993
Fill in the Blanks
+1
-0
The laplace transform of the periodic function $$f(t)$$ described by the curve below
$$i.e.\,\,f\left( t \right) = \left\{ {\matrix{ {\sin \,t,} & {if\left( {2n - 1} \right)\pi < t < 2n\pi \left( {n = 1,2,3,...} \right)} \cr 0 & {otherwise\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,} \cr } } \right.$$ is ___________.
$$i.e.\,\,f\left( t \right) = \left\{ {\matrix{ {\sin \,t,} & {if\left( {2n - 1} \right)\pi < t < 2n\pi \left( {n = 1,2,3,...} \right)} \cr 0 & {otherwise\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,} \cr } } \right.$$ is ___________.
Questions Asked from Transform Theory (Marks 1)
Number in Brackets after Paper Indicates No. of Questions
GATE ME Subjects
Engineering Mechanics
Strength of Materials
Theory of Machines
Engineering Mathematics
Machine Design
Fluid Mechanics
Turbo Machinery
Heat Transfer
Thermodynamics
Production Engineering
Industrial Engineering
General Aptitude