1
GATE ME 2009
+1
-0.3
The inverse Laplace transform of $${1 \over {\left( {{s^2} + s} \right)}}$$ is
A
$$1 + {e^t}$$
B
$$1 - {e^t}$$
C
$$1 - {e^{ - t}}$$
D
$$1 + {e^{ - t}}$$
2
GATE ME 2007
+1
-0.3
If $$F(s)$$ is the Laplace transform of the function $$f(t)$$ then Laplace transform of $$\int\limits_0^t {f\left( x \right)dx}$$ is
A
$${1 \over s}F\left( s \right)$$
B
$${1 \over s}F\left( s \right) - f\left( 0 \right)$$
C
$$s\,F\left( s \right) - f\left( 0 \right)$$
D
$$\int {F\left( s \right)ds}$$
3
GATE ME 1999
+1
-0.3
Laplace transform of $${\left( {a + bt} \right)^2}$$ where $$'a'$$ and $$'b'$$ are constants is given by:
A
$${\left( {a + bs} \right)^2}$$
B
$$1/{\left( {a + bs} \right)^2}$$
C
$$\left( {{a^2}/s} \right) + \left( {2ab/{s^2}} \right) + \left( {2{b^2}/{s^3}} \right)$$
D
$$\left( {{a^2}/s} \right) + \left( {2ab/{s^2}} \right) + \left( {{b^2}/{s^3}} \right)$$
4
GATE ME 1997
Subjective
+1
-0
Solve the initial value problem
$${{{d^2}y} \over {d{x^2}}} - 4{{dy} \over {dx}} + 3y = 0$$ with $$y=3$$ and
$${{dy} \over {dx}} = 7$$ at $$x=0$$ using the laplace transform technique?
GATE ME Subjects
Engineering Mechanics
Machine Design
Strength of Materials
Heat Transfer
Production Engineering
Industrial Engineering
Turbo Machinery
Theory of Machines
Engineering Mathematics
Fluid Mechanics
Thermodynamics
General Aptitude
EXAM MAP
Joint Entrance Examination