1
GATE ME 2009
MCQ (Single Correct Answer)
+1
-0.3
The inverse Laplace transform of $${1 \over {\left( {{s^2} + s} \right)}}$$ is
A
$$1 + {e^t}$$
B
$$1 - {e^t}$$
C
$$1 - {e^{ - t}}$$
D
$$1 + {e^{ - t}}$$
2
GATE ME 2007
MCQ (Single Correct Answer)
+1
-0.3
If $$F(s)$$ is the Laplace transform of the function $$f(t)$$ then Laplace transform of $$\int\limits_0^t {f\left( x \right)dx} $$ is
A
$${1 \over s}F\left( s \right)$$
B
$${1 \over s}F\left( s \right) - f\left( 0 \right)$$
C
$$s\,F\left( s \right) - f\left( 0 \right)$$
D
$$\int {F\left( s \right)ds} $$
3
GATE ME 1999
MCQ (Single Correct Answer)
+1
-0.3
Laplace transform of $${\left( {a + bt} \right)^2}$$ where $$'a'$$ and $$'b'$$ are constants is given by:
A
$${\left( {a + bs} \right)^2}$$
B
$$1/{\left( {a + bs} \right)^2}$$
C
$$\left( {{a^2}/s} \right) + \left( {2ab/{s^2}} \right) + \left( {2{b^2}/{s^3}} \right)$$
D
$$\left( {{a^2}/s} \right) + \left( {2ab/{s^2}} \right) + \left( {{b^2}/{s^3}} \right)$$
4
GATE ME 1997
Subjective
+1
-0
Solve the initial value problem
$${{{d^2}y} \over {d{x^2}}} - 4{{dy} \over {dx}} + 3y = 0$$ with $$y=3$$ and
$${{dy} \over {dx}} = 7$$ at $$x=0$$ using the laplace transform technique?
GATE ME Subjects
Turbo Machinery
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12