1
GATE ME 2009
+1
-0.3
The inverse Laplace transform of $${1 \over {\left( {{s^2} + s} \right)}}$$ is
A
$$1 + {e^t}$$
B
$$1 - {e^t}$$
C
$$1 - {e^{ - t}}$$
D
$$1 + {e^{ - t}}$$
2
GATE ME 2007
+1
-0.3
If $$F(s)$$ is the Laplace transform of the function $$f(t)$$ then Laplace transform of $$\int\limits_0^t {f\left( x \right)dx}$$ is
A
$${1 \over s}F\left( s \right)$$
B
$${1 \over s}F\left( s \right) - f\left( 0 \right)$$
C
$$s\,F\left( s \right) - f\left( 0 \right)$$
D
$$\int {F\left( s \right)ds}$$
3
GATE ME 1999
+1
-0.3
Laplace transform of $${\left( {a + bt} \right)^2}$$ where $$'a'$$ and $$'b'$$ are constants is given by:
A
$${\left( {a + bs} \right)^2}$$
B
$$1/{\left( {a + bs} \right)^2}$$
C
$$\left( {{a^2}/s} \right) + \left( {2ab/{s^2}} \right) + \left( {2{b^2}/{s^3}} \right)$$
D
$$\left( {{a^2}/s} \right) + \left( {2ab/{s^2}} \right) + \left( {{b^2}/{s^3}} \right)$$
4
GATE ME 1997
Subjective
+1
-0
Solve the initial value problem
$${{{d^2}y} \over {d{x^2}}} - 4{{dy} \over {dx}} + 3y = 0$$ with $$y=3$$ and
$${{dy} \over {dx}} = 7$$ at $$x=0$$ using the laplace transform technique?
GATE ME Subjects
EXAM MAP
Medical
NEET