1
GATE ME 2017 Set 2
Numerical
+2
-0
The arrangement shown in the figure measures the velocity $$V$$ of a gas of density $$1kg/{m^3}$$ flowing through a pipe. The acceleration due to gravity is $$9.81m/{s^2}.$$ If the manometric fluid is water (density $${1000kg/{m^3}}$$ ) and the velocity $$V$$ is $$20 m/s,$$ the differential head $$h$$ (in $$mm$$) between the two arms of the manometer is ______.
Your input ____
2
GATE ME 2017 Set 2
Numerical
+2
-0
A $$60$$ $$mm$$ $$-$$ diameter water jet strikes a plate containing a hole of $$40mm$$ diameter as shown in the figure. Part of the jet passes through the hole horizontally, and the remaining is deflected vertically. The density of water is $$1000$$ $$kg/{m^3}$$ . If velocities are as indicated in the figure, the magnitude of horizontal force (in $$N$$) required to hold the plate is _______________
Your input ____
3
GATE ME 2016 Set 3
Numerical
+2
-0
The water jet exiting from a stationary tank through a circular opening of diameter $$300$$ $$mm$$ impinges on a rigid wall as shown in the figure. Neglect all minor losses and assume the water level in the tank to remain constant. The net horizontal force experienced by the wall is ___________ $$kN.$$
Density of water is $$1000\,\,kg/{m^3}.$$
Acceleration due to gravity $$g = 10\,\,m/{s^2}.$$
Your input ____
4
GATE ME 2015 Set 1
Numerical
+2
-0
Water $$\left( {\rho = 1000kg/{m^3}} \right)$$ flows through a venturimeter with inlet diameter $$80$$ $$mm$$ and throat
diameter $$40$$ $$mm.$$ The inlet and throat gauge pressures are measured to be $$400$$ $$kPa$$ and $$130$$ $$kPa$$
respectively. Assuming the venturimeter to be horizontal and neglecting friction, the inlet velocity (in $$m/s$$) is ___________.
Your input ____
Questions Asked from Fluid Dynamics (Marks 2)
Number in Brackets after Paper Indicates No. of Questions
GATE ME 2024 (2)
GATE ME 2023 (3)
GATE ME 2022 Set 2 (2)
GATE ME 2022 Set 1 (2)
GATE ME 2017 Set 2 (2)
GATE ME 2016 Set 3 (1)
GATE ME 2015 Set 1 (1)
GATE ME 2015 Set 3 (1)
GATE ME 2014 Set 1 (1)
GATE ME 2014 Set 3 (1)
GATE ME 2013 (1)
GATE ME 2012 (1)
GATE ME 2011 (1)
GATE ME 2010 (1)
GATE ME 2009 (1)
GATE ME 2005 (2)
GATE ME 2003 (2)
GATE ME 1999 (1)
GATE ME 1990 (1)
GATE ME 1988 (1)
GATE ME 1987 (1)
GATE ME Subjects
Engineering Mechanics
Machine Design
Strength of Materials
Heat Transfer
Production Engineering
Industrial Engineering
Turbo Machinery
Theory of Machines
Engineering Mathematics
Fluid Mechanics
Thermodynamics
General Aptitude