1
GATE ME 2009
MCQ (Single Correct Answer)
+2
-0.6
Consider steady, incompressible and irrotational flow through a reducer in a horizontal pipe where the diameter is reduced from $$20cm$$ to $$10cm.$$ The pressure in the $$20cm$$ pipe just upstream of the reducer is $$150kPa.$$ The fluid has a vapour pressure of $$50kPa$$ and a specific weight of $$5\,\,kN/{m^3}.$$ Neglecting frictional effects, the maximum discharge (in $${m^3}/s$$) that can pass through the reducer without causing cavitation is
A
$$0.05$$
B
$$0.16$$
C
$$0.27$$
D
$$0.38$$
2
GATE ME 2005
MCQ (Single Correct Answer)
+2
-0.6
A $$U$$-tube manometer with a small quantity of mercury is used to measure the static pressure difference between two locations $$A$$ and $$B$$ in a conical section through which an incompressible fluid flows. At a particular flow rate, the mercury column appears as shown in the figure. The density of mercury is $$13600$$ $$kg/{m^3}$$ and $$g = 9.81$$ $$m/{s^2}.$$ Which of the following is correct? GATE ME 2005 Fluid Mechanics - Fluid Dynamics Question 39 English
A
Flow direction is $$A$$ to $$B$$ & $${P_A} - {P_B} = 20\,kPa$$
B
Flow direction is $$B$$ to $$A$$ & $${P_A} - {P_B} = 1.4\,kPa$$
C
Flow direction is $$A$$ to $$B$$ & $${P_B} - {P_A} = 20\,kPa$$
D
Flow direction is $$B$$ to $$A$$ & $${P_B} - {P_A} = 1.4\,kPa$$
3
GATE ME 2005
MCQ (Single Correct Answer)
+2
-0.6
A venturimeter of $$20$$ $$mm$$ throat diameter is used to measure the velocity of water in a horizontal pipe of $$40$$ $$mm$$ diameter. If the pressure difference between the pipe and throat sections is found to be $$30$$ $$kPa$$ then, neglecting frictional losses, the flow velocity is
A
$$0.2$$ $$m/s$$
B
$$1$$ $$m/s$$
C
$$1.4$$ $$m/s$$
D
$$2.0$$ $$m/s$$
4
GATE ME 2003
MCQ (Single Correct Answer)
+2
-0.6
A water container is kept on a weighing balance. Water from a tap is falling vertically into the container with a volume flow rate of $$'Q'$$; the velocity of the water when it hits the water surface is $$'U'$$. At a particular instant of time the total mass of the container and water is $$'m'.$$ The force registered by the weighing balance at this instant of time is
A
$$mg + \rho \,QU$$
B
$$mg + 2\,\rho \,QU$$
C
$$mg + \,\rho \,Q{U^2}/2$$
D
$$\rho \,Q{U^2}/2$$
GATE ME Subjects
Turbo Machinery
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12