1
GATE ME 2009
MCQ (Single Correct Answer)
+2
-0.6
Consider steady, incompressible and irrotational flow through a reducer in a horizontal pipe where the diameter is reduced from $$20cm$$ to $$10cm.$$ The pressure in the $$20cm$$ pipe just upstream of the reducer is $$150kPa.$$ The fluid has a vapour pressure of $$50kPa$$ and a specific weight of $$5\,\,kN/{m^3}.$$ Neglecting frictional effects, the maximum discharge (in $${m^3}/s$$) that can pass through the reducer without causing cavitation is
2
GATE ME 2005
MCQ (Single Correct Answer)
+2
-0.6
A $$U$$-tube manometer with a small quantity of mercury is used to measure the static pressure difference between two locations $$A$$ and $$B$$ in a conical section through which an incompressible fluid flows. At a particular flow rate, the mercury column appears as shown in the figure. The density of mercury is $$13600$$ $$kg/{m^3}$$ and $$g = 9.81$$ $$m/{s^2}.$$ Which of the following is correct?
3
GATE ME 2005
MCQ (Single Correct Answer)
+2
-0.6
A venturimeter of $$20$$ $$mm$$ throat diameter is used to measure the velocity of water in a horizontal pipe of $$40$$ $$mm$$ diameter. If the pressure difference between the pipe and throat sections is found to be $$30$$ $$kPa$$ then, neglecting frictional losses, the flow velocity is
4
GATE ME 2003
MCQ (Single Correct Answer)
+2
-0.6
A water container is kept on a weighing balance. Water from a tap is falling vertically into the container with a volume flow rate of $$'Q'$$; the velocity of the water when it hits the water surface is $$'U'$$. At a particular instant of time the total mass of the container and water is $$'m'.$$ The force registered by the weighing balance at this instant of time is
Questions Asked from Fluid Dynamics (Marks 2)
Number in Brackets after Paper Indicates No. of Questions
GATE ME 2024 (2)
GATE ME 2023 (3)
GATE ME 2022 Set 2 (2)
GATE ME 2022 Set 1 (2)
GATE ME 2017 Set 2 (2)
GATE ME 2016 Set 3 (1)
GATE ME 2015 Set 3 (1)
GATE ME 2015 Set 1 (1)
GATE ME 2014 Set 3 (1)
GATE ME 2014 Set 1 (1)
GATE ME 2013 (1)
GATE ME 2012 (1)
GATE ME 2011 (1)
GATE ME 2010 (1)
GATE ME 2009 (1)
GATE ME 2005 (2)
GATE ME 2003 (2)
GATE ME 1999 (1)
GATE ME 1990 (1)
GATE ME 1988 (1)
GATE ME 1987 (1)
GATE ME Subjects
Engineering Mechanics
Machine Design
Strength of Materials
Heat Transfer
Production Engineering
Industrial Engineering
Turbo Machinery
Theory of Machines
Engineering Mathematics
Fluid Mechanics
Thermodynamics
General Aptitude