1
GATE ME 2011
MCQ (Single Correct Answer)
+2
-0.6
Figure shows the schematic for the measurement of velocity of air (density $$ = 1.2\,\,kg/{m^3}$$ ) through a constant -area duct using a Pilot tube and a water-tube manometer. The differential head of water (density $$ = 1000\,kg/{m^3}$$) in the two columns of the manometer is $$10$$ $$mm.$$ Take acceleration due to gravity as $$9.8$$ $$m/{s^2}.$$ The velocity of air in $$m/s$$
2
GATE ME 2010
MCQ (Single Correct Answer)
+2
-0.6
A smooth pipe of diameter $$200$$ $$mm$$ carries water. The pressure in the pipe at section
$${S_1}\,\,$$ (elevation : $$10$$ $$m$$ ) is the $$50$$ $$kPa.$$ At section
$${S_2}\,\,$$ (elevation : $$12$$ $$m$$ ) the pressure is $$20$$ $$kPa$$ and velocity is $$2$$ $$m/s.$$
Density of water is $$1000$$ $$kg/{m^3}$$ and acceleration due to gravity is $$9.8$$ $$m{s^{ - 2}}.$$ Which of the following is TRUE?
$${S_1}\,\,$$ (elevation : $$10$$ $$m$$ ) is the $$50$$ $$kPa.$$ At section
$${S_2}\,\,$$ (elevation : $$12$$ $$m$$ ) the pressure is $$20$$ $$kPa$$ and velocity is $$2$$ $$m/s.$$
Density of water is $$1000$$ $$kg/{m^3}$$ and acceleration due to gravity is $$9.8$$ $$m{s^{ - 2}}.$$ Which of the following is TRUE?
3
GATE ME 2009
MCQ (Single Correct Answer)
+2
-0.6
Consider steady, incompressible and irrotational flow through a reducer in a horizontal pipe where the diameter is reduced from $$20cm$$ to $$10cm.$$ The pressure in the $$20cm$$ pipe just upstream of the reducer is $$150kPa.$$ The fluid has a vapour pressure of $$50kPa$$ and a specific weight of $$5\,\,kN/{m^3}.$$ Neglecting frictional effects, the maximum discharge (in $${m^3}/s$$) that can pass through the reducer without causing cavitation is
4
GATE ME 2005
MCQ (Single Correct Answer)
+2
-0.6
A venturimeter of $$20$$ $$mm$$ throat diameter is used to measure the velocity of water in a horizontal pipe of $$40$$ $$mm$$ diameter. If the pressure difference between the pipe and throat sections is found to be $$30$$ $$kPa$$ then, neglecting frictional losses, the flow velocity is
Questions Asked from Fluid Dynamics (Marks 2)
Number in Brackets after Paper Indicates No. of Questions
GATE ME 2024 (2)
GATE ME 2023 (3)
GATE ME 2022 Set 2 (2)
GATE ME 2022 Set 1 (2)
GATE ME 2017 Set 2 (2)
GATE ME 2016 Set 3 (1)
GATE ME 2015 Set 3 (1)
GATE ME 2015 Set 1 (1)
GATE ME 2014 Set 3 (1)
GATE ME 2014 Set 1 (1)
GATE ME 2013 (1)
GATE ME 2012 (1)
GATE ME 2011 (1)
GATE ME 2010 (1)
GATE ME 2009 (1)
GATE ME 2005 (2)
GATE ME 2003 (2)
GATE ME 1999 (1)
GATE ME 1990 (1)
GATE ME 1988 (1)
GATE ME 1987 (1)
GATE ME Subjects
Engineering Mechanics
Machine Design
Strength of Materials
Heat Transfer
Production Engineering
Industrial Engineering
Turbo Machinery
Theory of Machines
Engineering Mathematics
Fluid Mechanics
Thermodynamics
General Aptitude