1
GATE ME 2022 Set 1
Numerical
+2
-0

During open-heart surgery, a patient’s blood is cooled down to 25 °C from 37 °C using a concentric tube counter-flow heat exchanger. Water enters the heat exchanger at 4 °C and leaves at 18 °C. Blood flow rate during the surgery is 5 L/minute.

Use the following fluid properties :

$$ \begin{array}{|c|c|c|} \hline \text { Fluid } & \text { Density }\left(\mathrm{kg} / \mathrm{m}^3\right) & \text { Specific heat }(\mathrm{J} / \mathrm{kg}-\mathrm{K}) \\ \hline \text { Blood } & 1050 & 3740 \\ \hline \text { Water } & 1000 & 4200 \\ \hline \end{array} $$

Effectiveness of the heat exchanger is _________ (round off to 2 decimal places).

Your input ____
2
GATE ME 2017 Set 2
MCQ (Single Correct Answer)
+2
-0.6
In a counter-flow heat exchanger, water is heated at the rate of $$1.5kg/s$$ from $$\,40{}^ \circ C\,$$ to $$\,80{}^ \circ C\,$$ by an oil entering at $$\,120{}^ \circ C\,$$ and leaving at $$\,60{}^ \circ C\,$$. The specific heats of water and oil are $$4.2kJ/kgK$$ and $$2kJ/kgK,$$ respectively. The overall heat transfer coefficient is $$400\,W/{m^2}K.$$ The required heat transfer surface are (in $${m^2}$$) is
A
$$0.104$$
B
$$0.022$$
C
$$10.4$$
D
$$21.84$$
3
GATE ME 2016 Set 2
Numerical
+2
-0
Consider a parallel-flow heat exchanger with area $${A_p}$$ and a counter-flow heat exchanger with area $${A_c}.$$ In both the heat exchangers, the hot stream flowing at $$1$$ $$kg/s$$ cools from $$80{}^ \circ C$$ to $$50{}^ \circ C$$. For the cold stream in both the heat exchangers, the flow rate and the inlet temperature are $$2$$ $$kg/s$$ and $$10{}^ \circ C$$, respectively. The hot and cold streams in both the heat exchangers are of the same fluid. Also, both the heat exchangers have the same overall heat transfer coefficient. The ratio $${A_c}/{A_p}$$ is ______________
Your input ____
4
GATE ME 2015 Set 2
MCQ (Single Correct Answer)
+2
-0.6
A balanced counter-flow heat exchanger has a surface area of $$20\,\,{m^2}$$ and overall heat transfer coefficient of $$20$$ $$W/{m^2}$$-$$K$$. Air $$\left( {{C_p} = 1000J/kg - K} \right)$$ entering at $$0.4$$ $$kg/s$$ and $$280$$ $$K$$ is to preheated by the air leaving the system at $$0.4$$ $$kg/s$$ and $$300$$ $$K.$$ The outlet temperature (in $$K$$) of the preheated air is
A
$$290$$
B
$$300$$
C
$$320$$
D
$$350$$
GATE ME Subjects
Turbo Machinery
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12