1
GATE ME 2022 Set 1
Numerical
+2
-0
During open-heart surgery, a patient’s blood is cooled down to 25 °C from 37 °C using a concentric tube counter-flow heat exchanger. Water enters the heat exchanger at 4 °C and leaves at 18 °C. Blood flow rate during the surgery is 5 L/minute.
Use the following fluid properties :
$$ \begin{array}{|c|c|c|} \hline \text { Fluid } & \text { Density }\left(\mathrm{kg} / \mathrm{m}^3\right) & \text { Specific heat }(\mathrm{J} / \mathrm{kg}-\mathrm{K}) \\ \hline \text { Blood } & 1050 & 3740 \\ \hline \text { Water } & 1000 & 4200 \\ \hline \end{array} $$Effectiveness of the heat exchanger is _________ (round off to 2 decimal places).
Your input ____
2
GATE ME 2017 Set 2
MCQ (Single Correct Answer)
+2
-0.6
In a counter-flow heat exchanger, water is heated at the rate of $$1.5kg/s$$ from $$\,40{}^ \circ C\,$$ to $$\,80{}^ \circ C\,$$ by an oil entering at $$\,120{}^ \circ C\,$$ and leaving at $$\,60{}^ \circ C\,$$. The specific heats of water and oil are $$4.2kJ/kgK$$ and $$2kJ/kgK,$$ respectively. The overall heat transfer coefficient is $$400\,W/{m^2}K.$$ The required heat transfer surface are (in $${m^2}$$) is
3
GATE ME 2016 Set 2
Numerical
+2
-0
Consider a parallel-flow heat exchanger with area $${A_p}$$ and a counter-flow heat exchanger with area $${A_c}.$$ In both the heat exchangers, the hot stream flowing at $$1$$ $$kg/s$$ cools from $$80{}^ \circ C$$ to $$50{}^ \circ C$$. For the cold stream in both the heat exchangers, the flow rate and the inlet temperature are $$2$$ $$kg/s$$ and $$10{}^ \circ C$$, respectively. The hot and cold streams in both the heat exchangers are of the same fluid. Also, both the heat exchangers have the same overall heat transfer coefficient. The ratio $${A_c}/{A_p}$$ is ______________
Your input ____
4
GATE ME 2015 Set 2
MCQ (Single Correct Answer)
+2
-0.6
A balanced counter-flow heat exchanger has a surface area of $$20\,\,{m^2}$$ and overall heat transfer coefficient of $$20$$ $$W/{m^2}$$-$$K$$. Air $$\left( {{C_p} = 1000J/kg - K} \right)$$ entering at $$0.4$$ $$kg/s$$ and $$280$$ $$K$$ is to preheated by the air leaving the system at $$0.4$$ $$kg/s$$ and $$300$$ $$K.$$ The outlet temperature (in $$K$$) of the preheated air is
Questions Asked from Heat Exchangers (Marks 2)
Number in Brackets after Paper Indicates No. of Questions
GATE ME 2024 (1)
GATE ME 2022 Set 2 (1)
GATE ME 2022 Set 1 (1)
GATE ME 2017 Set 2 (1)
GATE ME 2016 Set 2 (1)
GATE ME 2015 Set 2 (1)
GATE ME 2014 Set 2 (1)
GATE ME 2014 Set 3 (1)
GATE ME 2013 (2)
GATE ME 2012 (1)
GATE ME 2009 (1)
GATE ME 2008 (1)
GATE ME 2007 (1)
GATE ME 2005 (1)
GATE ME 2004 (1)
GATE ME 2003 (1)
GATE ME 2000 (1)
GATE ME 1997 (1)
GATE ME Subjects
Engineering Mechanics
Strength of Materials
Theory of Machines
Engineering Mathematics
Machine Design
Fluid Mechanics
Turbo Machinery
Heat Transfer
Thermodynamics
Production Engineering
Industrial Engineering
General Aptitude