1
GATE ME 2003
MCQ (Single Correct Answer)
+2
-0.6
In a counter flow heat exchanger, for the hot fluid the heat capacity $$= 2kJ/kg$$ $$K,$$ mass flow rate $$= 5 kg/s,$$ inlet temperature $$ = {150^ \circ }C$$, outlet temperature $$ = {100^ \circ }C$$. For the cold fluid, heat capacity $$= 4 kJ/kg$$ $$K,$$ mass flow rate $$= 10 kg/s,$$ inlet temperature=$$ = {20^ \circ }C$$. Neglecting heat transfer to the surroundings, the outlet temperature of the cold fluid in $$ = {^ \circ }C$$ is
2
GATE ME 2000
MCQ (Single Correct Answer)
+2
-0.6
Air enters a counter-flow heat exchanger at $${7^ \circ }C$$ and leaves at $${40^ \circ }C$$. Water enters at $${30^ \circ }C$$ and leaves at $${50^ \circ }C$$. The $$LMTD$$ in deg $$C$$ is
3
GATE ME 1997
MCQ (Single Correct Answer)
+2
-0.6
In certain $$HE,$$ both the fluids have identical mass flow rate-specific heat product. The hot fluid enters at $${76^ \circ }C$$ and leaves at $${47^ \circ }C$$ and the cold fluid entering at $${28^ \circ }C$$ leave at $${55^ \circ }C$$. The effectiveness of the heat exchanger $$(HE)$$ is
Questions Asked from Heat Exchangers (Marks 2)
Number in Brackets after Paper Indicates No. of Questions
GATE ME 2024 (1)
GATE ME 2022 Set 2 (1)
GATE ME 2022 Set 1 (1)
GATE ME 2017 Set 2 (1)
GATE ME 2016 Set 2 (1)
GATE ME 2015 Set 2 (1)
GATE ME 2014 Set 2 (1)
GATE ME 2014 Set 3 (1)
GATE ME 2013 (2)
GATE ME 2012 (1)
GATE ME 2009 (1)
GATE ME 2008 (1)
GATE ME 2007 (1)
GATE ME 2005 (1)
GATE ME 2004 (1)
GATE ME 2003 (1)
GATE ME 2000 (1)
GATE ME 1997 (1)
GATE ME Subjects
Engineering Mechanics
Strength of Materials
Theory of Machines
Engineering Mathematics
Machine Design
Fluid Mechanics
Turbo Machinery
Heat Transfer
Thermodynamics
Production Engineering
Industrial Engineering
General Aptitude