1
GATE ME 2014 Set 2
Numerical
+2
-0
In a concentric counter flow heat exchanger, water flows through the inner tube at $${25^ \circ }C$$ and leaves at $${42^ \circ }C$$. The engine oil enters at $${100^ \circ }C$$ and flows in the annular flow passage. The exit temperature of the engine oil is $${50^ \circ }C.$$ Mass flow rate of water and the engine oil are $$1.5kg/s$$ and $$1$$ $$kg/s,$$ respectively. The specific heat of water and oil are $$4178$$ $$J/kg.K$$ and $$2130$$ $$J/kg.K,$$ respectively. The effectiveness of this heat exchanger is _________.
Your input ____
2
GATE ME 2014 Set 3
Numerical
+2
-0
A double-pipe counter-flow heat exchanger transfers heat between two water streams. Tube side water at $$19$$ liter/s is heated from $${10^ \circ }C$$ to $${38^ \circ }C$$. Shell side water at $$25$$ liter/s is entering at $${46^ \circ }C$$. Assume constant properties of water; density is $$1000\,kg/{m^3}$$ and specific heat is $$4186$$ $$J/kg.K.$$ The $$LMTD$$ (in $${}^ \circ C$$) is ____________.
Your input ____
3
GATE ME 2013
MCQ (Single Correct Answer)
+2
-0.6
Water (specific heat, $${c_p} = 4.18\,\,kJ/kgK$$ ) enters a pipe at a rate of $$0.01$$ $$kg/s$$ and temperature of $${20^ \circ }C.$$ The pipe, of diameter $$50$$ $$mm$$ and length $$3$$ $$m,$$ is subjected to a wall heat flux $${q_w}$$ in $$W/{m^2}:$$
If $${q_w}$$ $$=5000$$ and the convection heat transfer coefficient at the pipe outlet is $$1000$$ $$W/{m^2}K,$$ the temperature in $$^ \circ C$$ at the inner surface of the pipe at the outlet is
4
GATE ME 2013
MCQ (Single Correct Answer)
+2
-0.6
Water (specific heat, $${c_p} = 4.18\,\,kJ/kgK$$ ) enters a pipe at a rate of $$0.01$$ $$kg/s$$ and temperature of $${20^ \circ }C.$$ The pipe, of diameter $$50$$ $$mm$$ and length $$3$$ $$m,$$ is subjected to a wall heat flux $${q_w}$$ in $$W/{m^2}:$$
If $${q_w}$$ $$=2500x,$$ where $$x$$ is $$m$$ and in the direction of flow ($$x=0$$ at the inlet), the bulk mean temperature of the water leaving the pipe in $$^ \circ C$$ is
Questions Asked from Heat Exchangers (Marks 2)
Number in Brackets after Paper Indicates No. of Questions
GATE ME 2024 (1)
GATE ME 2022 Set 2 (1)
GATE ME 2022 Set 1 (1)
GATE ME 2017 Set 2 (1)
GATE ME 2016 Set 2 (1)
GATE ME 2015 Set 2 (1)
GATE ME 2014 Set 2 (1)
GATE ME 2014 Set 3 (1)
GATE ME 2013 (2)
GATE ME 2012 (1)
GATE ME 2009 (1)
GATE ME 2008 (1)
GATE ME 2007 (1)
GATE ME 2005 (1)
GATE ME 2004 (1)
GATE ME 2003 (1)
GATE ME 2000 (1)
GATE ME 1997 (1)
GATE ME Subjects
Engineering Mechanics
Machine Design
Strength of Materials
Heat Transfer
Production Engineering
Industrial Engineering
Turbo Machinery
Theory of Machines
Engineering Mathematics
Fluid Mechanics
Thermodynamics
General Aptitude