1
JEE Advanced 2013 Paper 2 Offline
MCQ (Single Correct Answer)
+4
-1
Let $$S = {S_1} \cap {S_2} \cap {S_3}$$, where $${S_1} = \left\{ {z \in C:\left| z \right| < 4} \right\},{S_2} = \left\{ {z \in C:{\mathop{\rm Im}\nolimits} \left[ {{{z - 1 + \sqrt 3 i} \over {1 - \sqrt 3 i}}} \right] > 0} \right\}$$ and $${S_3} = \left\{ {z \in C:{\mathop{\rm Re}\nolimits} z > 0} \right\}\,$$.
$$\,\mathop {\min }\limits_{z \in S} \left| {1 - 3i - z} \right| = $$
2
JEE Advanced 2013 Paper 2 Offline
MCQ (Single Correct Answer)
+4
-1
Let $$S = {S_1} \cap {S_2} \cap {S_3}$$, where $${S_1} = \left\{ {z \in C:\left| z \right| < 4} \right\},{S_2} = \left\{ {z \in C:{\mathop{\rm Im}\nolimits} \left[ {{{z - 1 + \sqrt 3 i} \over {1 - \sqrt 3 i}}} \right] > 0} \right\}$$ and $${S_3} = \left\{ {z \in C:{\mathop{\rm Re}\nolimits} z > 0} \right\}\,$$.
Area of S =
3
JEE Advanced 2013 Paper 2 Offline
MCQ (More than One Correct Answer)
+4
-2
$$a \in R$$ (the set of all real numbers), a $$\ne$$ $$-$$1,
$$\mathop {\lim }\limits_{n \to \infty } {{({1^a} + {2^a} + ... + {n^a})} \over {{{(n + 1)}^{a - 1}}[(na + 1) + (na + 2) + ... + (na + n)]}} = {1 \over {60}}$$, Then a = ?
4
JEE Advanced 2013 Paper 2 Offline
MCQ (More than One Correct Answer)
+4
-2
Let $$\omega$$ be a complex cube root of unity with $$\omega$$ $$\ne$$ 1 and P = [pij] be a n $$\times$$ n matrix with pij = $$\omega$$i + j. Then P2 $$\ne$$ 0, when n = ?
Paper analysis
Total Questions
Chemistry
20
Mathematics
20
Physics
20
More papers of JEE Advanced
JEE Advanced 2024 Paper 2 Online
JEE Advanced 2024 Paper 1 Online
JEE Advanced 2023 Paper 2 Online
JEE Advanced 2023 Paper 1 Online
JEE Advanced 2022 Paper 2 Online
JEE Advanced 2022 Paper 1 Online
JEE Advanced 2021 Paper 2 Online
JEE Advanced 2021 Paper 1 Online
JEE Advanced 2020 Paper 2 Offline
JEE Advanced 2020 Paper 1 Offline
JEE Advanced 2019 Paper 2 Offline
JEE Advanced 2019 Paper 1 Offline
JEE Advanced 2018 Paper 2 Offline
JEE Advanced 2018 Paper 1 Offline
JEE Advanced 2017 Paper 2 Offline
JEE Advanced 2017 Paper 1 Offline
JEE Advanced 2016 Paper 2 Offline
JEE Advanced 2016 Paper 1 Offline
JEE Advanced 2015 Paper 2 Offline
JEE Advanced 2015 Paper 1 Offline
JEE Advanced 2014 Paper 2 Offline
JEE Advanced 2014 Paper 1 Offline
JEE Advanced 2013 Paper 2 Offline
JEE Advanced 2013 Paper 1 Offline
IIT-JEE 2012 Paper 2 Offline
IIT-JEE 2012 Paper 1 Offline
IIT-JEE 2011 Paper 1 Offline
IIT-JEE 2011 Paper 2 Offline
IIT-JEE 2010 Paper 1 Offline
IIT-JEE 2010 Paper 2 Offline
IIT-JEE 2009 Paper 2 Offline
IIT-JEE 2009 Paper 1 Offline
IIT-JEE 2008 Paper 2 Offline
IIT-JEE 2008 Paper 1 Offline
IIT-JEE 2007
IIT-JEE 2007 Paper 2 Offline
IIT-JEE 2006 Screening
IIT-JEE 2006
IIT-JEE 2005 Screening
IIT-JEE 2005
IIT-JEE 2004
IIT-JEE 2004 Screening
IIT-JEE 2003
IIT-JEE 2003 Screening
IIT-JEE 2002 Screening
IIT-JEE 2002
IIT-JEE 2001
IIT-JEE 2001 Screening
IIT-JEE 2000 Screening
IIT-JEE 2000
IIT-JEE 1999 Screening
IIT-JEE 1999
IIT-JEE 1998
IIT-JEE 1998 Screening
IIT-JEE 1997
IIT-JEE 1996
IIT-JEE 1995
IIT-JEE 1995 Screening
IIT-JEE 1994
IIT-JEE 1993
IIT-JEE 1992
IIT-JEE 1991
IIT-JEE 1990
IIT-JEE 1989
IIT-JEE 1988
IIT-JEE 1987
IIT-JEE 1986
IIT-JEE 1985
IIT-JEE 1984
IIT-JEE 1983
IIT-JEE 1982
IIT-JEE 1981
IIT-JEE 1980
IIT-JEE 1979
IIT-JEE 1978
JEE Advanced
Papers
2020
2019
2018
2017
2016
1997
1996
1994
1993
1992
1991
1990
1989
1988
1987
1986
1985
1984
1983
1982
1981
1980
1979
1978