1
JEE Advanced 2013 Paper 2 Offline
MCQ (Single Correct Answer)
+4
-1
Let $$S = {S_1} \cap {S_2} \cap {S_3}$$, where $${S_1} = \left\{ {z \in C:\left| z \right| < 4} \right\},{S_2} = \left\{ {z \in C:{\mathop{\rm Im}\nolimits} \left[ {{{z - 1 + \sqrt 3 i} \over {1 - \sqrt 3 i}}} \right] > 0} \right\}$$ and $${S_3} = \left\{ {z \in C:{\mathop{\rm Re}\nolimits} z > 0} \right\}\,$$.

$$\,\mathop {\min }\limits_{z \in S} \left| {1 - 3i - z} \right| = $$

A
$${{2 - \sqrt 3 } \over 2}$$
B
$${{2 + \sqrt 3 } \over 2}$$
C
$${{3 - \sqrt 3 } \over 2}$$
D
$${{3 + \sqrt 3 } \over 2}$$
2
JEE Advanced 2013 Paper 2 Offline
MCQ (Single Correct Answer)
+4
-1
Let $$S = {S_1} \cap {S_2} \cap {S_3}$$, where $${S_1} = \left\{ {z \in C:\left| z \right| < 4} \right\},{S_2} = \left\{ {z \in C:{\mathop{\rm Im}\nolimits} \left[ {{{z - 1 + \sqrt 3 i} \over {1 - \sqrt 3 i}}} \right] > 0} \right\}$$ and $${S_3} = \left\{ {z \in C:{\mathop{\rm Re}\nolimits} z > 0} \right\}\,$$.

Area of S =

A
$${{10\pi } \over 3}$$
B
$${{20\pi } \over 3}$$
C
$${{16\pi } \over 3}$$
D
$${{32\pi } \over 3}$$
3
JEE Advanced 2013 Paper 2 Offline
MCQ (More than One Correct Answer)
+4
-2

$$a \in R$$ (the set of all real numbers), a $$\ne$$ $$-$$1,

$$\mathop {\lim }\limits_{n \to \infty } {{({1^a} + {2^a} + ... + {n^a})} \over {{{(n + 1)}^{a - 1}}[(na + 1) + (na + 2) + ... + (na + n)]}} = {1 \over {60}}$$, Then a = ?

A
5
B
7
C
$${{ - 15} \over 2}$$
D
$${{ - 17} \over 2}$$
4
JEE Advanced 2013 Paper 2 Offline
MCQ (More than One Correct Answer)
+4
-2

Let $$\omega$$ be a complex cube root of unity with $$\omega$$ $$\ne$$ 1 and P = [pij] be a n $$\times$$ n matrix with pij = $$\omega$$i + j. Then P2 $$\ne$$ 0, when n = ?

A
57
B
55
C
58
D
56
JEE Advanced Papers
EXAM MAP