1
JEE Advanced 2013 Paper 2 Offline
MCQ (Single Correct Answer)
+3
-1

The unbalanced chemical reactions given in List I show missing reagent or condition (?) which are provided in List II. Match List I with List II and select the correct answer using the code given below the lists :

List I List II
P. $$Pb{O_2} + {H_2}S{O_4}\buildrel ? \over
\longrightarrow PbS{O_4} + {O_2} + Other\,products$$
1. NO
Q. $$N{a_2}{S_2}{O_3} + {H_2}O\buildrel ? \over
\longrightarrow NaHS{O_4} + Other\,products$$
2. $${I_2}$$
R. $${N_2}{H_4}\buildrel ? \over
\longrightarrow {N_2} + Other\,products$$
3. Warm
S. $$Xe{F_2}\buildrel ? \over
\longrightarrow Xe + Other\,products$$
4. $$C{l_2}$$

A
P-4, Q-2, R-3, S-1
B
P-3, Q-2, R-1, S-4
C
P-1, Q-4, R-2, S-3
D
P-3, Q-4, R-2, S-1
2
JEE Advanced 2013 Paper 2 Offline
MCQ (Single Correct Answer)
+3
-1

Match the chemical conversions in List I with the appropriate reagents in List II and select the correct answer using the code given below the lists :

JEE Advanced 2013 Paper 2 Offline Chemistry - Alcohols, Phenols and Ethers Question 14 English

A
P-2, Q-3, R-1, S-4
B
P-3, Q-2, R-1, S-4
C
P-2, Q-3, R-4, S-1
D
P-3, Q-2, R-4, S-1
3
JEE Advanced 2013 Paper 2 Offline
MCQ (Single Correct Answer)
+4
-1
match List $$I$$ with List $$II$$ and select the correct answer using the code given below the lists:

$$\,\,\,\,$$ $$\,\,\,\,$$ $$\,\,\,\,$$ List $$I$$
(P.)$$\,\,\,\,$$ Volume of parallelopiped determined by vectors $$\overrightarrow a ,\overrightarrow b $$ and $$\overrightarrow c $$ is $$2.$$ Then the volume of the parallelepiped determined by vectors $$2\left( {\overrightarrow a \times \overrightarrow b } \right),3\left( {\overrightarrow b \times \overrightarrow c } \right)$$ and $$\left( {\overrightarrow c \times \overrightarrow a } \right)$$ is
(Q.)$$\,\,\,\,$$ Volume of parallelopiped determined by vectors $$\overrightarrow a ,\overrightarrow b $$ and $$\overrightarrow c $$ is $$5.$$ Then the volume of the parallelepiped determined by vectors $$3\left( {\overrightarrow a + \overrightarrow b } \right),\left( {\overrightarrow b + \overrightarrow c } \right)$$ and $$2\left( {\overrightarrow c + \overrightarrow a } \right)$$ is
(R.)$$\,\,\,\,$$ Area of a triangle with adjacent sides determined by vectors $${\overrightarrow a }$$ and $${\overrightarrow b }$$ is $$20.$$ Then the area of the triangle with adjacent sides determined by vectors $$\left( {2\overrightarrow a + 3\overrightarrow b } \right)$$ and $$\left( {\overrightarrow a - \overrightarrow b } \right)$$ is
(S.)$$\,\,\,\,$$ Area of a parallelogram with adjacent sides determined by vectors $${\overrightarrow a }$$ and $${\overrightarrow b }$$ is $$30.$$ Then the area of the parallelogram with adjacent sides determined by vectors $$\left( {\overrightarrow a + \overrightarrow b } \right)$$ and $${\overrightarrow a }$$ is

$$\,\,\,\,$$ $$\,\,\,\,$$ $$\,\,\,\,$$ List $$II$$
(1.)$$\,\,\,\,$$ $$100$$
(2.)$$\,\,\,\,$$ $$30$$
(3.)$$\,\,\,\,$$ $$24$$
(4.)$$\,\,\,\,$$ $$60$$

A
$$P = 4,Q = 2,R = 3,S = 1$$
B
$$P = 2,Q = 3,R = 1,S = 4$$
C
$$P = 3,Q = 4,R = 1,S = 2$$
D
$$P = 1,Q = 4,R = 3,S = 2$$
4
JEE Advanced 2013 Paper 2 Offline
MCQ (More than One Correct Answer)
+4
-1

Let $\omega=\frac{\sqrt{3}+i}{2}$ and $P=\left\{\omega^n: n=1,2,3, \ldots\right\}$. Further

$\mathrm{H}_1=\left\{z \in \mathrm{C}: \operatorname{Re} z<\frac{1}{2}\right\}$ and

$\mathrm{H}_2=\left\{z \in \mathrm{C}: \operatorname{Re} z<\frac{-1}{2}\right\}$, where C is the

set of all complex numbers. If $z_1 \in \mathrm{P} \cap \mathrm{H}_1, z_2 \in$ $\mathrm{P} \cap \mathrm{H}_2$ and O

represents the origin, then $\angle z_1 \mathrm{O} z_2=$

A
$${\pi \over 2}$$
B
$${\pi \over 6}\,$$
C
$${{2\pi } \over 3}$$
D
$${{5\pi } \over 6}$$
JEE Advanced Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12