1
JEE Advanced 2013 Paper 2 Offline
MCQ (Single Correct Answer)
+3
-1

The unbalanced chemical reactions given in List I show missing reagent or condition (?) which are provided in List II. Match List I with List II and select the correct answer using the code given below the lists :

List I List II
P. $$Pb{O_2} + {H_2}S{O_4}\buildrel ? \over
\longrightarrow PbS{O_4} + {O_2} + Other\,products$$
1. NO
Q. $$N{a_2}{S_2}{O_3} + {H_2}O\buildrel ? \over
\longrightarrow NaHS{O_4} + Other\,products$$
2. $${I_2}$$
R. $${N_2}{H_4}\buildrel ? \over
\longrightarrow {N_2} + Other\,products$$
3. Warm
S. $$Xe{F_2}\buildrel ? \over
\longrightarrow Xe + Other\,products$$
4. $$C{l_2}$$

A
P-4, Q-2, R-3, S-1
B
P-3, Q-2, R-1, S-4
C
P-1, Q-4, R-2, S-3
D
P-3, Q-4, R-2, S-1
2
JEE Advanced 2013 Paper 2 Offline
MCQ (Single Correct Answer)
+3
-1

Match the chemical conversions in List I with the appropriate reagents in List II and select the correct answer using the code given below the lists :

JEE Advanced 2013 Paper 2 Offline Chemistry - Alcohols, Phenols and Ethers Question 17 English

A
P-2, Q-3, R-1, S-4
B
P-3, Q-2, R-1, S-4
C
P-2, Q-3, R-4, S-1
D
P-3, Q-2, R-4, S-1
3
JEE Advanced 2013 Paper 2 Offline
MCQ (Single Correct Answer)
+4
-1
match List $$I$$ with List $$II$$ and select the correct answer using the code given below the lists:

$$\,\,\,\,$$ $$\,\,\,\,$$ $$\,\,\,\,$$ List $$I$$
(P.)$$\,\,\,\,$$ Volume of parallelopiped determined by vectors $$\overrightarrow a ,\overrightarrow b $$ and $$\overrightarrow c $$ is $$2.$$ Then the volume of the parallelepiped determined by vectors $$2\left( {\overrightarrow a \times \overrightarrow b } \right),3\left( {\overrightarrow b \times \overrightarrow c } \right)$$ and $$\left( {\overrightarrow c \times \overrightarrow a } \right)$$ is
(Q.)$$\,\,\,\,$$ Volume of parallelopiped determined by vectors $$\overrightarrow a ,\overrightarrow b $$ and $$\overrightarrow c $$ is $$5.$$ Then the volume of the parallelepiped determined by vectors $$3\left( {\overrightarrow a + \overrightarrow b } \right),\left( {\overrightarrow b + \overrightarrow c } \right)$$ and $$2\left( {\overrightarrow c + \overrightarrow a } \right)$$ is
(R.)$$\,\,\,\,$$ Area of a triangle with adjacent sides determined by vectors $${\overrightarrow a }$$ and $${\overrightarrow b }$$ is $$20.$$ Then the area of the triangle with adjacent sides determined by vectors $$\left( {2\overrightarrow a + 3\overrightarrow b } \right)$$ and $$\left( {\overrightarrow a - \overrightarrow b } \right)$$ is
(S.)$$\,\,\,\,$$ Area of a parallelogram with adjacent sides determined by vectors $${\overrightarrow a }$$ and $${\overrightarrow b }$$ is $$30.$$ Then the area of the parallelogram with adjacent sides determined by vectors $$\left( {\overrightarrow a + \overrightarrow b } \right)$$ and $${\overrightarrow a }$$ is

$$\,\,\,\,$$ $$\,\,\,\,$$ $$\,\,\,\,$$ List $$II$$
(1.)$$\,\,\,\,$$ $$100$$
(2.)$$\,\,\,\,$$ $$30$$
(3.)$$\,\,\,\,$$ $$24$$
(4.)$$\,\,\,\,$$ $$60$$

A
$$P = 4,Q = 2,R = 3,S = 1$$
B
$$P = 2,Q = 3,R = 1,S = 4$$
C
$$P = 3,Q = 4,R = 1,S = 2$$
D
$$P = 1,Q = 4,R = 3,S = 2$$
4
JEE Advanced 2013 Paper 2 Offline
MCQ (More than One Correct Answer)
+4
-1

Let $\omega=\frac{\sqrt{3}+i}{2}$ and $P=\left\{\omega^n: n=1,2,3, \ldots\right\}$. Further

$\mathrm{H}_1=\left\{z \in \mathrm{C}: \operatorname{Re} z<\frac{1}{2}\right\}$ and

$\mathrm{H}_2=\left\{z \in \mathrm{C}: \operatorname{Re} z<\frac{-1}{2}\right\}$, where C is the

set of all complex numbers. If $z_1 \in \mathrm{P} \cap \mathrm{H}_1, z_2 \in$ $\mathrm{P} \cap \mathrm{H}_2$ and O

represents the origin, then $\angle z_1 \mathrm{O} z_2=$

A
$${\pi \over 2}$$
B
$${\pi \over 6}\,$$
C
$${{2\pi } \over 3}$$
D
$${{5\pi } \over 6}$$
JEE Advanced Papers
EXAM MAP