1
IIT-JEE 2003 Screening
MCQ (Single Correct Answer)
+2
-0.5
If $$\,\left| z \right| = 1$$ and $$\omega = {{z - 1} \over {z + 1}}$$ (where $$z \ne - 1$$), then $${\mathop{\rm Re}\nolimits} \left( \omega \right)$$ is
A
0
B
$$ - {1 \over {{{\left| {z + 1} \right|}^2}}}$$
C
$$\left| {{z \over {z + 1}}} \right|.{1 \over {{{\left| {z + 1} \right|}^2}}}$$
D
$$\,{{\sqrt 2 } \over {{{\left| {z + 1} \right|}^2}}}$$
2
IIT-JEE 2003 Screening
MCQ (Single Correct Answer)
+2
-0.5
Tangent is drawn to ellipse
$${{{x^2}} \over {27}} + {y^2} = 1\,\,\,at\,\left( {3\sqrt 3 \cos \theta ,\sin \theta } \right)\left( {where\,\,\theta \in \left( {0,\pi /2} \right)} \right)$$.

Then the value of $$\theta $$ such that sum of intercepts on axes made by this tangent is minimum, is

A
$$\pi /3$$
B
$$\pi /6$$
C
$$\pi /8$$
D
$$\pi /4$$
3
IIT-JEE 2003 Screening
MCQ (Single Correct Answer)
+2
-0.5
In $$\left[ {0,1} \right]$$ Languages Mean Value theorem is NOT applicable to
A
$$f\left( x \right) = \left\{ {\matrix{ {{1 \over 2} - x} & {x < {1 \over 2}} \cr {{{\left( {{1 \over 2} - x} \right)}^2}} & {x \ge {1 \over 2}} \cr } } \right.$$
B
$$f\left( x \right) = \left\{ {\matrix{ {\sin x,} & {x \ne 0} \cr {1,} & {x = 0} \cr } } \right.$$
C
$$f\left( x \right) = x\left| x \right|$$
D
$$f\left( x \right) = \left| x \right|$$
4
IIT-JEE 2003 Screening
MCQ (Single Correct Answer)
+2
-0.5
If the angles of a triangle are in the ratio $$4:1:1$$, then the ratio of the longest side to the perimeter is
A
$$\sqrt 3 :\left( {2 + \sqrt 3 } \right)$$
B
$$1:6$$
C
$$1:2 + \sqrt 3 $$
D
$$2:3$$
JEE Advanced Papers
EXAM MAP