1
IIT-JEE 2003 Screening
MCQ (Single Correct Answer)
+2
-0.5
Tangent is drawn to ellipse
$${{{x^2}} \over {27}} + {y^2} = 1\,\,\,at\,\left( {3\sqrt 3 \cos \theta ,\sin \theta } \right)\left( {where\,\,\theta \in \left( {0,\pi /2} \right)} \right)$$.
$${{{x^2}} \over {27}} + {y^2} = 1\,\,\,at\,\left( {3\sqrt 3 \cos \theta ,\sin \theta } \right)\left( {where\,\,\theta \in \left( {0,\pi /2} \right)} \right)$$.
Then the value of $$\theta $$ such that sum of intercepts on axes made by this tangent is minimum, is
2
IIT-JEE 2003 Screening
MCQ (Single Correct Answer)
+2
-0.5
In $$\left[ {0,1} \right]$$ Languages Mean Value theorem is NOT applicable to
3
IIT-JEE 2003 Screening
MCQ (Single Correct Answer)
+2
-0.5
If the angles of a triangle are in the ratio $$4:1:1$$, then the ratio of the longest side to the perimeter is
4
IIT-JEE 2003 Screening
MCQ (Single Correct Answer)
+2
-0.5
The focal chord to $${y^2} = 16x$$ is tangent to $${\left( {x - 6} \right)^2} + {y^2} = 2,$$ then the possible values of the slope of the chord, are
Paper analysis
Total Questions
Chemistry
3
Mathematics
20
Physics
2
More papers of JEE Advanced
JEE Advanced 2024 Paper 2 Online
JEE Advanced 2024 Paper 1 Online
JEE Advanced 2023 Paper 2 Online
JEE Advanced 2023 Paper 1 Online
JEE Advanced 2022 Paper 2 Online
JEE Advanced 2022 Paper 1 Online
JEE Advanced 2021 Paper 2 Online
JEE Advanced 2021 Paper 1 Online
JEE Advanced 2020 Paper 2 Offline
JEE Advanced 2020 Paper 1 Offline
JEE Advanced 2019 Paper 2 Offline
JEE Advanced 2019 Paper 1 Offline
JEE Advanced 2018 Paper 2 Offline
JEE Advanced 2018 Paper 1 Offline
JEE Advanced 2017 Paper 2 Offline
JEE Advanced 2017 Paper 1 Offline
JEE Advanced 2016 Paper 2 Offline
JEE Advanced 2016 Paper 1 Offline
JEE Advanced 2015 Paper 2 Offline
JEE Advanced 2015 Paper 1 Offline
JEE Advanced 2014 Paper 2 Offline
JEE Advanced 2014 Paper 1 Offline
JEE Advanced 2013 Paper 2 Offline
JEE Advanced 2013 Paper 1 Offline
IIT-JEE 2012 Paper 2 Offline
IIT-JEE 2012 Paper 1 Offline
IIT-JEE 2011 Paper 1 Offline
IIT-JEE 2011 Paper 2 Offline
IIT-JEE 2010 Paper 1 Offline
IIT-JEE 2010 Paper 2 Offline
IIT-JEE 2009 Paper 2 Offline
IIT-JEE 2009 Paper 1 Offline
IIT-JEE 2008 Paper 2 Offline
IIT-JEE 2008 Paper 1 Offline
IIT-JEE 2007
IIT-JEE 2007 Paper 2 Offline
IIT-JEE 2006
IIT-JEE 2006 Screening
IIT-JEE 2005 Screening
IIT-JEE 2005
IIT-JEE 2004 Screening
IIT-JEE 2004
IIT-JEE 2003 Screening
IIT-JEE 2003
IIT-JEE 2002 Screening
IIT-JEE 2002
IIT-JEE 2001 Screening
IIT-JEE 2001
IIT-JEE 2000 Screening
IIT-JEE 2000
IIT-JEE 1999 Screening
IIT-JEE 1999
IIT-JEE 1998 Screening
IIT-JEE 1998
IIT-JEE 1997
IIT-JEE 1996
IIT-JEE 1995 Screening
IIT-JEE 1995
IIT-JEE 1994
IIT-JEE 1993
IIT-JEE 1992
IIT-JEE 1991
IIT-JEE 1990
IIT-JEE 1989
IIT-JEE 1988
IIT-JEE 1987
IIT-JEE 1986
IIT-JEE 1985
IIT-JEE 1984
IIT-JEE 1983
IIT-JEE 1982
IIT-JEE 1981
IIT-JEE 1980
IIT-JEE 1979
IIT-JEE 1978
JEE Advanced
Papers
2020
2019
2018
2017
2016
1997
1996
1994
1993
1992
1991
1990
1989
1988
1987
1986
1985
1984
1983
1982
1981
1980
1979
1978