1
IIT-JEE 2001 Screening
MCQ (Single Correct Answer)
+2
-0.5
If the sum of the first $$2n$$ terms of the A.P.$$2,5,8,......,$$ is equal to the sum of the first $$n$$ terms of the A.P.$$57,59,61,.....,$$ then $$n$$ equals
A
10
B
12
C
11
D
13
2
IIT-JEE 2001 Screening
MCQ (Single Correct Answer)
+2
-0.5
The maximum value of $$\left( {\cos {\alpha _1}} \right).\left( {\cos {\alpha _2}} \right).....\left( {\cos {\alpha _n}} \right),$$ under the restrictions
$$0 \le {\alpha _1},{\alpha _2},....,{\alpha _n} \le {\pi \over 2}$$ vand $$\left( {\cot {\alpha _1}} \right).\left( {\cot {\alpha _2}} \right)....\left( {\cot {\alpha _n}} \right) = 1$$ is
A
$$1/{2^{n/2}}$$
B
$$1/{2^n}$$
C
$$1/2n\,$$
D
1
3
IIT-JEE 2001 Screening
MCQ (Single Correct Answer)
+2
-0.5
If $$\alpha + \beta = \pi /2$$ and $$\beta + \gamma = \alpha ,$$ then $$\tan \,\alpha \,$$ equals
A
$$2\left( {\tan \beta + \tan \gamma } \right)$$
B
$$\,\tan \beta + \tan \gamma $$
C
$$\tan \beta + 2\tan \gamma $$
D
$$2\tan \beta + \tan \gamma $$
4
IIT-JEE 2001 Screening
MCQ (Single Correct Answer)
+2
-0.5
The complex numbers $${z_1},\,{z_2}$$ and $${z_3}$$ satisfying $${{{z_1} - {z_3}} \over {{z_2} - {z_3}}} = {{1 - i\sqrt 3 } \over 2}\,$$ are the vertices of a triangle which is
A
of area zero
B
right-angled isosceles
C
equilateral
D
obtuse-angled isosceles
JEE Advanced Papers
EXAM MAP