1
IIT-JEE 2001 Screening
MCQ (Single Correct Answer)
+2
-0.5
Let $$f\left( x \right) = \left( {1 + {b^2}} \right){x^2} + 2bx + 1$$ and let $$m(b)$$ be the minimum value of $$f(x)$$. As $$b$$ varies, the range of $$m(b)$$ is
2
IIT-JEE 2001 Screening
MCQ (Single Correct Answer)
+3
-0.75
The value of $$\int\limits_{ - \pi }^\pi {{{{{\cos }^2}x} \over {1 + {a^x}}}dx,\,a > 0,} $$ is
3
IIT-JEE 2001 Screening
MCQ (Single Correct Answer)
+4
-1
Let $$\overrightarrow a = \overrightarrow i - \overrightarrow k ,\overrightarrow b = x\overrightarrow i + \overrightarrow j + \left( {1 - x} \right)\overrightarrow k $$ and
$$\overrightarrow c = y\overrightarrow i - x\overrightarrow j + \left( {1 + x - y} \right)\overrightarrow k .$$ Then $$\left[ {\overrightarrow a \,\overrightarrow b \,\overrightarrow c } \right]$$ depends on
$$\overrightarrow c = y\overrightarrow i - x\overrightarrow j + \left( {1 + x - y} \right)\overrightarrow k .$$ Then $$\left[ {\overrightarrow a \,\overrightarrow b \,\overrightarrow c } \right]$$ depends on
4
IIT-JEE 2001 Screening
MCQ (Single Correct Answer)
+4
-1
If $$\overrightarrow a \,,\,\overrightarrow b $$ and $$\overrightarrow c $$ are unit vectors, then $${\left| {\overrightarrow a - \overrightarrow b } \right|^2} + {\left| {\overrightarrow b - \overrightarrow c } \right|^2} + {\left| {\overrightarrow c - \overrightarrow a } \right|^2}$$ does NOT exceed
Paper analysis
Total Questions
Chemistry
7
Mathematics
25
Physics
3
More papers of JEE Advanced
JEE Advanced 2024 Paper 2 Online
JEE Advanced 2024 Paper 1 Online
JEE Advanced 2023 Paper 2 Online
JEE Advanced 2023 Paper 1 Online
JEE Advanced 2022 Paper 2 Online
JEE Advanced 2022 Paper 1 Online
JEE Advanced 2021 Paper 2 Online
JEE Advanced 2021 Paper 1 Online
JEE Advanced 2020 Paper 2 Offline
JEE Advanced 2020 Paper 1 Offline
JEE Advanced 2019 Paper 2 Offline
JEE Advanced 2019 Paper 1 Offline
JEE Advanced 2018 Paper 2 Offline
JEE Advanced 2018 Paper 1 Offline
JEE Advanced 2017 Paper 2 Offline
JEE Advanced 2017 Paper 1 Offline
JEE Advanced 2016 Paper 2 Offline
JEE Advanced 2016 Paper 1 Offline
JEE Advanced 2015 Paper 2 Offline
JEE Advanced 2015 Paper 1 Offline
JEE Advanced 2014 Paper 2 Offline
JEE Advanced 2014 Paper 1 Offline
JEE Advanced 2013 Paper 2 Offline
JEE Advanced 2013 Paper 1 Offline
IIT-JEE 2012 Paper 2 Offline
IIT-JEE 2012 Paper 1 Offline
IIT-JEE 2011 Paper 1 Offline
IIT-JEE 2011 Paper 2 Offline
IIT-JEE 2010 Paper 1 Offline
IIT-JEE 2010 Paper 2 Offline
IIT-JEE 2009 Paper 2 Offline
IIT-JEE 2009 Paper 1 Offline
IIT-JEE 2008 Paper 2 Offline
IIT-JEE 2008 Paper 1 Offline
IIT-JEE 2007
IIT-JEE 2007 Paper 2 Offline
IIT-JEE 2006 Screening
IIT-JEE 2006
IIT-JEE 2005 Screening
IIT-JEE 2005
IIT-JEE 2004
IIT-JEE 2004 Screening
IIT-JEE 2003
IIT-JEE 2003 Screening
IIT-JEE 2002 Screening
IIT-JEE 2002
IIT-JEE 2001
IIT-JEE 2001 Screening
IIT-JEE 2000 Screening
IIT-JEE 2000
IIT-JEE 1999 Screening
IIT-JEE 1999
IIT-JEE 1998
IIT-JEE 1998 Screening
IIT-JEE 1997
IIT-JEE 1996
IIT-JEE 1995
IIT-JEE 1995 Screening
IIT-JEE 1994
IIT-JEE 1993
IIT-JEE 1992
IIT-JEE 1991
IIT-JEE 1990
IIT-JEE 1989
IIT-JEE 1988
IIT-JEE 1987
IIT-JEE 1986
IIT-JEE 1985
IIT-JEE 1984
IIT-JEE 1983
IIT-JEE 1982
IIT-JEE 1981
IIT-JEE 1980
IIT-JEE 1979
IIT-JEE 1978
JEE Advanced
Papers
2020
2019
2018
2017
2016
1997
1996
1994
1993
1992
1991
1990
1989
1988
1987
1986
1985
1984
1983
1982
1981
1980
1979
1978