1
IIT-JEE 1996
Fill in the Blanks
+2
-0
A nonzero vector $$\overrightarrow a $$ is parallel to the line of intersection of the plane determined by the vectors $$\widehat i,\widehat i + \widehat j$$ and the plane determined by the vectors $$\widehat i - \widehat j,\widehat i + \widehat k.$$ The angle between $$\overrightarrow a $$ and the vector $$\widehat i - 2\widehat j + 2\widehat k$$ is ................
2
IIT-JEE 1996
Fill in the Blanks
+2
-0
If $$\overrightarrow b \,$$ and $$\overrightarrow c \,$$ are two non-collinear unit vectors and $$\overrightarrow a \,$$ is any vector, then $$\left( {\overrightarrow a .\overrightarrow b } \right)\overrightarrow b + \left( {\overrightarrow a .\overrightarrow c } \right)\overrightarrow c + {{\overrightarrow a .\left( {\overrightarrow b \times \overrightarrow c } \right)} \over {\left| {\overrightarrow b \times \overrightarrow c } \right|}}\left( {\overrightarrow b \times \overrightarrow c } \right) = $$ ..............
3
IIT-JEE 1996
Subjective
+5
-0
The position vectors of the vertices $$A, B$$ and $$C$$ of a tetrahedron $$ABCD$$ are $$\widehat i + \widehat j + \widehat k,\,\widehat i$$ and $$3\widehat i\,,$$ respectively. The altitude from vertex $$D$$ to the opposite face $$ABC$$ meets the median line through $$A$$ of the triangle $$ABC$$ at a point $$E.$$ If the length of the side $$AD$$ is $$4$$ and the volume of the tetrahedron is $${{2\sqrt 2 } \over 3},$$ find the position vector of the point $$E$$ for all its possible positions.
4
IIT-JEE 1996
Fill in the Blanks
+2
-0
If for nonzero $$x$$, $$af(x)+$$ $$bf\left( {{1 \over x}} \right) = {1 \over x} - 5$$ where $$a \ne b,$$ then
$$\int_1^2 {f\left( x \right)dx} = .......$$
JEE Advanced Papers
EXAM MAP