1
IIT-JEE 1992
MCQ (Single Correct Answer)
+2
-0.5
The centre of a circle passing through the points (0, 0), (1, 0) and touching the circle $${x^2} + {y^2} = 9$$is
A
$$\left( {{3 \over 2},{1 \over 2}} \right)\,$$
B
$$\left( {{1 \over 2},{3 \over 2}} \right)\,$$
C
$$\left( {{1 \over 2},{1 \over 2}} \right)\,$$
D
$$\left( {{1 \over 2}, - {2^{{1 \over 2}}}} \right)\,$$
2
IIT-JEE 1992
MCQ (Single Correct Answer)
+2
-0.5
$${\rm{z }} \ne {\rm{0}}$$ is a complex number

Column I


(A) Re z = 0
(B) Arg $$z = {\pi \over 4}$$

Column II


(p) Re$${z^2}$$ = 0
(q) Im$${z^2}$$ = 0
(r) Re$${z^2}$$ = Im$${z^2}$$
A
(A) - q, (B) - p
B
(A) - p, (B) - q
C
(A) - r, (B) - p
D
(A) - p, (B) - r
3
IIT-JEE 1992
Subjective
+4
-0
Show that the value of $${{\tan x} \over {\tan 3x}},$$ wherever defined never lies between $${1 \over 3}$$ and 3.
4
IIT-JEE 1992
MCQ (Single Correct Answer)
+2
-0.5
Let $$\alpha \,,\,\beta $$ be the roots of the equation (x - a) (x - b) = c, $$c \ne 0$$. Then the roots of the equation $$(x - \alpha \,)\,(x - \beta ) + c = 0$$ are
A
a, c
B
b, c
C
a, b
D
a + c, b + c
JEE Advanced Papers
EXAM MAP