1
IIT-JEE 1988
Subjective
+3
-0
A box contains $$2$$ fifty paise coins, $$5$$ twenty five paise coins and a certain fixed number $$N\,\,\left( { \ge 2} \right)$$ of ten and five paise coins. Five coins are taken out of the box at random. Find the probability that the total value of these $$5$$ coins is less than one rupee and fifty paise.
2
IIT-JEE 1988
Fill in the Blanks
+2
-0
The components of a vector $$\overrightarrow a $$ along and perpendicular to a non-zero vector $$\overrightarrow b $$ are ......and .....respectively.
3
IIT-JEE 1988
MCQ (Single Correct Answer)
+2
-0.5
Let $$\overrightarrow a ,\overrightarrow b ,\overrightarrow c ,$$ be three non-coplanar vectors and $$\overrightarrow p ,\overrightarrow q ,\overrightarrow r,$$ are vectors defined by the relations $$\overrightarrow p = {{\overrightarrow b \times \overrightarrow c } \over {\left[ {\overrightarrow a \overrightarrow b \overrightarrow c } \right]}},\,\,\overrightarrow q = {{\overrightarrow c \times \overrightarrow a } \over {\left[ {\overrightarrow a \overrightarrow b \overrightarrow c } \right]}},\,\,\overrightarrow r = {{\overrightarrow a \times \overrightarrow b } \over {\left[ {\overrightarrow a \overrightarrow b \overrightarrow c } \right]}}$$ then the value of the expression $$\left( {\overrightarrow a + \overrightarrow b } \right).\overrightarrow p + \left( {\overrightarrow b + \overrightarrow c } \right).\overrightarrow q + \left( {\overrightarrow c + \overrightarrow a } \right),\overrightarrow r $$ is equal to
4
IIT-JEE 1988
Subjective
+3
-0
Let $$OA$$ $$CB$$ be a parallelogram with $$O$$ at the origin and $$OC$$ a diagonal. Let $$D$$ be the midpoint of $$OA.$$ Using vector methods prove that $$BD$$ and $$CO$$ intersect in the same ratio. Determine this ratio.
Paper analysis
Total Questions
Chemistry
14
Mathematics
32
Physics
3
More papers of JEE Advanced
JEE Advanced 2024 Paper 2 Online
JEE Advanced 2024 Paper 1 Online
JEE Advanced 2023 Paper 2 Online
JEE Advanced 2023 Paper 1 Online
JEE Advanced 2022 Paper 2 Online
JEE Advanced 2022 Paper 1 Online
JEE Advanced 2021 Paper 2 Online
JEE Advanced 2021 Paper 1 Online
JEE Advanced 2020 Paper 2 Offline
JEE Advanced 2020 Paper 1 Offline
JEE Advanced 2019 Paper 2 Offline
JEE Advanced 2019 Paper 1 Offline
JEE Advanced 2018 Paper 2 Offline
JEE Advanced 2018 Paper 1 Offline
JEE Advanced 2017 Paper 2 Offline
JEE Advanced 2017 Paper 1 Offline
JEE Advanced 2016 Paper 2 Offline
JEE Advanced 2016 Paper 1 Offline
JEE Advanced 2015 Paper 2 Offline
JEE Advanced 2015 Paper 1 Offline
JEE Advanced 2014 Paper 2 Offline
JEE Advanced 2014 Paper 1 Offline
JEE Advanced 2013 Paper 2 Offline
JEE Advanced 2013 Paper 1 Offline
IIT-JEE 2012 Paper 2 Offline
IIT-JEE 2012 Paper 1 Offline
IIT-JEE 2011 Paper 1 Offline
IIT-JEE 2011 Paper 2 Offline
IIT-JEE 2010 Paper 1 Offline
IIT-JEE 2010 Paper 2 Offline
IIT-JEE 2009 Paper 2 Offline
IIT-JEE 2009 Paper 1 Offline
IIT-JEE 2008 Paper 2 Offline
IIT-JEE 2008 Paper 1 Offline
IIT-JEE 2007
IIT-JEE 2007 Paper 2 Offline
IIT-JEE 2006 Screening
IIT-JEE 2006
IIT-JEE 2005 Screening
IIT-JEE 2005
IIT-JEE 2004
IIT-JEE 2004 Screening
IIT-JEE 2003
IIT-JEE 2003 Screening
IIT-JEE 2002 Screening
IIT-JEE 2002
IIT-JEE 2001
IIT-JEE 2001 Screening
IIT-JEE 2000 Screening
IIT-JEE 2000
IIT-JEE 1999 Screening
IIT-JEE 1999
IIT-JEE 1998
IIT-JEE 1998 Screening
IIT-JEE 1997
IIT-JEE 1996
IIT-JEE 1995
IIT-JEE 1995 Screening
IIT-JEE 1994
IIT-JEE 1993
IIT-JEE 1992
IIT-JEE 1991
IIT-JEE 1990
IIT-JEE 1989
IIT-JEE 1988
IIT-JEE 1987
IIT-JEE 1986
IIT-JEE 1985
IIT-JEE 1984
IIT-JEE 1983
IIT-JEE 1982
IIT-JEE 1981
IIT-JEE 1980
IIT-JEE 1979
IIT-JEE 1978
JEE Advanced
Papers
2020
2019
2018
2017
2016
1997
1996
1994
1993
1992
1991
1990
1989
1988
1987
1986
1985
1984
1983
1982
1981
1980
1979
1978